Mechanical and Physical Evaluations of Fine Sand-RAP Blends for Subgrade and Subbase Applications
Downloads
Doi: 10.28991/CEJ-2025-011-05-017
Full Text: PDF
[2] Mukiza, E., Zhang, L., Liu, X., & Zhang, N. (2019). Utilization of red mud in road base and subgrade materials: A review. Resources, Conservation and Recycling, 141, 187–199. doi:10.1016/j.resconrec.2018.10.031.
[3] Xiao, J., Juang, C. H., Xu, C., Li, X., & Wang, L. (2014). Strength and deformation characteristics of compacted silt from the lower reaches of the Yellow River of China under monotonic and repeated loading. Engineering Geology, 178, 49–57. doi:10.1016/j.enggeo.2014.06.008.
[4] USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd Ed.). U.S. Government Printing Office (USDA), Washington, United States. doi:10.1097/00010694-197704000-00011.
[5] ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
[6] Mahvash, S., López-Querol, S., & Bahadori-Jahromi, A. (2018). Effect of fly ash on the bearing capacity of stabilised fine sand. Proceedings of the Institution of Civil Engineers: Ground Improvement, 171(2), 82–95. doi:10.1680/jgrim.17.00036.
[7] Anvari, S. M., & Shooshpasha, I. (2016). Influence of size of granulated rubber on bearing capacity of fine-grained sand. Arabian Journal of Geosciences, 9(18), 707. doi:10.1007/s12517-016-2744-8.
[8] Badrawi Attia, E. (2024). Influence of Geogrid-Axial Stiffness on Bearing Capacity of Geogrid-Reinforced Fine Sand. Port-Said Engineering Research Journal, 28(2), 41-49. doi:10.21608/pserj.2024.253870.1298.
[9] Van Den Berg, J. H., Van Gelder, A., & Mastbergen, D. R. (2002). The importance of breaching as a mechanism of subaqueous slope failure in fine sand. Sedimentology, 49(1), 81–95. doi:10.1111/j.1525-139X.2006.00168.x-i1.
[10] Martin, B. E., Chen, W., Song, B., & Akers, S. A. (2009). Moisture effects on the high strain-rate behavior of sand. Mechanics of Materials, 41(6), 786–798. doi:10.1016/j.mechmat.2009.01.014.
[11] Hatten, J., & Liles, G. (2019). A ‘healthy' balance – The role of physical and chemical properties in maintaining forest soil function in a changing world. Global Change and Forest Soils, 373–396, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-444-63998-1.00015-x.
[12] Holtz, R. D. (2001). Construction Materials: Soil and Natural Materials. Encyclopedia of Materials: Science and Technology, 1559–1563, Elsevier, Amsterdam, Netherlands. doi:10.1016/b0-08-043152-6/00278-3.
[13] Archibong, G. A., Sunday, E. U., Akudike, J. C., Okeke, O. C., & Amadi, C. (2020). A review of the principles and methods of soil stabilization. International Journal of Advanced Academic Research| Sciences, 6(3), 2488-9849.
[14] Plati, C., & Tsakoumaki, M. (2023). Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study. Sustainability (Switzerland), 15(3), 2129. doi:10.3390/su15032129.
[15] Zang, Y. X., Gong, W., Xie, H., Liu, B. L., & Chen, H. L. (2015). Chemical sand stabilization: A review of material, mechanism, and problems. Environmental Technology Reviews, 4(1), 119–132. doi:10.1080/21622515.2015.1105307.
[16] Tao, G., Yuan, J., Chen, Q., Peng, W., Yu, R., & Basack, S. (2021). Chemical stabilization of calcareous sand by polyurethane foam adhesive. Construction and Building Materials, 295, 123609. doi:10.1016/j.conbuildmat.2021.123609.
[17] Szendefy, J. (2013). Impact of the soil-stabilization with lime. Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, 2-6 September, 2013, Paris, France.
[18] Wang, S., Zhang, X., Zhang, P., & Chen, Z. (2023). Strength Performance and Stabilization Mechanism of Fine Sandy Soils Stabilized with Cement and Metakaolin. Sustainability (Switzerland), 15(4), 3431. doi:10.3390/su15043431.
[19] Markiewicz, A., Koda, E., & Kawalec, J. (2022). Geosynthetics for Filtration and Stabilisation: A Review. Polymers, 14(24), 5492. doi:10.3390/polym14245492.
[20] Andavan, S., & Kumar, B. M. (2020). Case study on soil stabilization by using bitumen emulsions – A review. Materials Today: Proceedings, 22, 1200–1202. doi:10.1016/j.matpr.2019.12.121.
[21] Rezaeimalek, S., Nasouri, A., Huang, J., Bin-Shafique, S., & Gilazghi, S. T. (2017). Comparison of short-term and long-term performances for polymer-stabilized sand and clay. Journal of Traffic and Transportation Engineering, 4(2), 145–155. doi:10.1016/j.jtte.2017.01.003.
[22] Vidal, R., Moliner, E., Martínez, G., & Rubio, M. C. (2013). Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resources, Conservation and Recycling, 74, 101–114. doi:10.1016/j.resconrec.2013.02.018.
[23] Aurangzeb, Q., & Al-Qadi, I. L. (2014). Asphalt pavements with high reclaimed asphalt pavement content: Economic and environmental perspectives. Transportation Research Record, 2456(1), 161–169. doi:10.3141/2456-16.
[24] Willis, J.R. (2015). Effect of recycled materials on pavement Life-Cycle Assessment: A case study. Proceedings of the 94th Annual Meeting of the Transportation Research Board, 11–15 January, 2015 Washington, United States.
[25] Bloom, E., Canton, A., Ahlman, A. P., & Edil, T. (2017). Life cycle assessment of highway reconstruction: A case study. Proceedings of the 96th Transportation Research Board Annual Meeting, 8–12 January, 2017, Washington, United States.
[26] Gruber, M. R., & Hofko, B. (2023). Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production. Sustainability (Switzerland), 15(5), 4529. doi:10.3390/su15054629.
[27] EAPA. (2022). Asphalt in figures 2022. European Asphalt Pavement Association (EAPA), Brussels, Belgium.
[28] Williams, B.A., Willis, J.R., & Shacat, J. (2020). Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2020. National Asphalt Pavement Association: Greenbelt, United States.
[29] Yousefdoost, S., Rebbechi, J., & Petho, L. (2016). P57: Implementing the use of reclaimed asphalt pavement (RAP) in TMR-registered dense-graded asphalt mixes. Project No: PRP16033, National Centre of Excellence (NACOE), Fortitude Valley, United Kingdom.
[30] ARRB. (2022). Best Practice Expert Advice on the Use of Recycled Materials in Road and Rail Infrastructure: Part A Technical Review and Assessment. Australian Road Research Board (ARRB), Melbourne, Australia.
[31] SABITA. (2021). Use of Reclaimed Asphalt in the Production of Asphalt, TRH 21. Southern African Bitumen Association (SABITA), Pinelands, South Africa.
[32] 32-Mousa, E., El-Badawy, S., & Azam, A. (2021). Evaluation of reclaimed asphalt pavement as base/subbase material in Egypt. Transportation Geotechnics, 26, 100414. doi:10.1016/j.trgeo.2020.100414.
[33] Cubas, M., Correa, E., Benavides, W., Suclupe, R., & Arriola, G. (2025). Modified Asphalt Mixtures Incorporating Pulverized Recycled Rubber and Recycled Asphalt Pavement. Civil Engineering Journal (Iran), 11(2), 420–436. doi:10.28991/CEJ-2025-011-02-02.
[34] Chfat, A. H. Z., Yaacob, H., Kamaruddin, N. M., Al-Saffar, Z. H., & Jaya, R. P. (2024). Performance of Asphalt Mixtures Modified with Nano-Eggshell Powder. Civil Engineering Journal, 10(11), 3699-3720. doi:10.28991/CEJ-2024-010-11-016.
[35] Suddeepong, A., Akkharawongwhatthana, K., Horpibulsuk, S., Buritatum, A., Hoy, M., Yaowarat, T., Pongsri, N., Chinkulkijniwat, A., Arulrajah, A., & Horpibulsuk, J. (2024). Polyethylene Terephthalate Modified Asphalt Concrete with Blended Recycled Aggregates: Analysis and Assessment. Civil Engineering Journal (Iran), 10(11), 3569–3588. doi:10.28991/CEJ-2024-010-11-08.
[36] Tsakoumaki, M., & Plati, C. (2024). A Critical Overview of Using Reclaimed Asphalt Pavement (RAP) in Road Pavement Construction. Infrastructures, 9(8), 128. doi:10.3390/infrastructures9080128.
[37] Tarsi, G., Tataranni, P., & Sangiorgi, C. (2020). The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials, 13(18), 4052. doi:10.3390/ma13184052.
[38] Zhang, K., Huchet, F., & Hobbs, A. (2019). A review of thermal processes in the production and their influences on performance of asphalt mixtures with reclaimed asphalt pavement (RAP). Construction and Building Materials, 206, 609–619. doi:10.1016/j.conbuildmat.2019.02.057.
[39] Hung, V. Q., Jayarathne, A., Gallage, C., Dawes, L., Egodawatta, P., & Jayakody, S. (2024). Leaching characteristics of metals from recycled concrete aggregates (RCA) and reclaimed asphalt pavements (RAP). Heliyon, 10(9), e30407. doi:10.1016/j.heliyon.2024.e30407.
[40] Al-Shujairi, A. O., Al-Taie, A. J., & Al-Mosawe, H. M. (2021). Review on applications of RAP in civil engineering. IOP Conference Series: Materials Science and Engineering, 1105(1), 012092. doi:10.1088/1757-899x/1105/1/012092.
[41] Puppala, A. J., Saride, S., & Williammee, R. (2012). Sustainable Reuse of Limestone Quarry Fines and RAP in Pavement Base/Subbase Layers. Journal of Materials in Civil Engineering, 24(4), 418–429. doi:10.1061/(asce)mt.1943-5533.0000404.
[42] Mousa, R. M., & Mousa, M. R. (2019). Cost–Benefit Analysis of RAP–Sand Blend Applications in Road Construction. Transportation Research Record, 2673(2), 415–426. doi:10.1177/0361198118823495.
[43] Buhari, B. M., Jose, A., Muhammed, A., Abhilash, S., & Shaji, S. (2025). Experimental Investigation on Concrete using RAP & QBP as Aggregates. AIP Conference Proceedings, 3280(1), 30007. doi:10.1063/5.0247522.
[44] Tiza, M. T., Agunwamba, J., Okafor, F., & Solomon, S. (2025). Prediction and Optimization of Compressive Strength of Cement Concrete with Box-Behnken Model. Journal of International Environmental Application and Science, 20(1), 56-69
[45] Suddeepong, A., Intra, A., Horpibulsuk, S., Suksiripattanapong, C., Arulrajah, A., & Shen, J. S. (2018). Durability against wetting-drying cycles for cement-stabilized reclaimed asphalt pavement blended with crushed rock. Soils and Foundations, 58(2), 333–343. doi:10.1016/j.sandf.2018.02.017.
[46] Miao, Y., Wang, S., Guo, L., Zheng, X., Huang, Y., & Wang, L. (2018). Effect of temperature on deformation properties of unbound granular materials containing fine RAP. Construction and Building Materials, 169, 443–451. doi:10.1016/j.conbuildmat.2018.02.154.
[47] Adhikari, S., Khattak, M. J., & Adhikari, B. (2020). Mechanical characteristics of Soil-RAP-Geopolymer mixtures for road base and subbase layers. International Journal of Pavement Engineering, 21(4), 483–496. doi:10.1080/10298436.2018.1492131.
[48] Hasan, M. M., Islam, M. R., & Tarefder, R. A. (2018). Characterization of subgrade soil mixed with recycled asphalt pavement. Journal of Traffic and Transportation Engineering (English Edition), 5(3), 207–214. doi:10.1016/j.jtte.2017.03.007.
[49] Suebsuk, J., Suksan, A., & Horpibulsuk, S. (2014). Strength assessment of cement treated soil-reclaimed asphalt pavement (RAP) mixture. International Journal of GEOMATE, 6(2), 878–884. doi:10.21660/2014.12.3262.
[50] Lima, D., Arrieta-Baldovino, J., & Izzo, R. L. S. (2023). Sustainable Use of Recycled Asphalt Pavement in Soil Stabilization. Civil Engineering Journal (Iran), 9(9), 2315–2329. doi:10.28991/CEJ-2023-09-09-016.
[51] ASTM D6913/D6913M-17. (2021). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/D6913_D6913M-17.
[52] ASTM D854-23. (2000). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-23.
[53] ASTM D698-12(2021). (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
[54] ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.
[55] ASTM D1194-94. (2017). Standard Test Method for Bearing Capacity of Soil for Static Load and Spread Footings (Withdrawn 2003). ASTM International, Pennsylvania, United States.
[56] ECP-104. (2018). Egyptian Code of Practice for Urban and Rural Roads, edition 1: Road materials and their tests (part four). Housing and Building National Research Center (HBRC), Cairo, Egypt.
[57] Das, B. M., & Sivakugan, N. (2018). Principles of Foundation Engineering. Cengage Learning, Boston, United States.
[58] Bowles, J. E., & Guo, Y. (1996). Foundation Analysis and Design. McGraw-Hill, New York, United States
[59] Vinod, P., Bhaskar, A. B., & Sreehari, S. (2009). Behaviour of a square model footing on loose sand reinforced with braided coir rope. Geotextiles and Geomembranes, 27(6), 464–474. doi:10.1016/j.geotexmem.2009.08.001.
[60] El Sawwaf, M., & Nazir, A. (2012). Behavior of Eccentrically Loaded Small-Scale Ring Footings Resting on Reinforced Layered Soil. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 376–384. doi:10.1061/(asce)gt.1943-5606.0000593.
[61] Azzam, W. R., & Elwakil, A. Z. (2017). Performance of Axially Loaded-Piled Retaining Wall: Experimental and Numerical Analysis. International Journal of Geomechanics, 17(2). doi:10.1061/(asce)gm.1943-5622.0000710.
[62] Mayne, P. W. (2007). In-situ test calibrations for evaluating soil parameters. Characterisation and Engineering Properties of Natural Soils, 3–4, 1601–1652, Taylor & Francis Group, London, United Kingdom. doi:10.1201/noe0415426916.ch2.
[63] Mishra, S., Sachdeva, S. N., & Manocha, R. (2019). Subgrade Soil Stabilization Using Stone Dust and Coarse Aggregate: A Cost Effective Approach. International Journal of Geosynthetics and Ground Engineering, 5(3), 1–11. doi:10.1007/s40891-019-0171-0.
[64] Taha, R., Ali, G., Basma, A., & Al-Turk, O. (1999). Evaluation of Reclaimed Asphalt Pavement Aggregate in Road Bases and Subbases. Transportation Research Record: Journal of the Transportation Research Board, 1652(1), 264–269. doi:10.3141/1652-33.
[65] Seferoǧlu, A. G., Seferoǧlu, M. T., & Akpinar, M. V. (2018). Investigation of the Effect of Recycled Asphalt Pavement Material on Permeability and Bearing Capacity in the Base Layer. Advances in Civil Engineering, 2018(1), 2860213. doi:10.1155/2018/2860213.
[66] Kalpakci, V., Faeq, R., & Canakci, H. (2018). Compaction and CBR properties of RAP/sand blends in Iraq. Arabian Journal of Geosciences, 11(21), 1–7. doi:10.1007/s12517-018-4033-1.
[67] De Beer, E. E. (1970). Experimental determination of the shape factors and the bearing capacity factors of sand. Geotechnique, 20(4), 387–411. doi:10.1680/geot.1970.20.4.387.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
