Development of Oscillating Water Column Breakwater Model
Downloads
Doi: 10.28991/CEJ-2025-011-04-02
Full Text: PDF
[2] Suh, K. D., Park, J. K., & Park, W. S. (2006). Wave reflection from partially perforated-wall caisson breakwater. Ocean Engineering, 33(2), 264–280. doi:10.1016/j.oceaneng.2004.11.015.
[3] Rageh, O. S., & Koraim, A. S. (2010). Hydraulic performance of vertical walls with horizontal slots used as breakwater. Coastal Engineering, 57(8), 745–756. doi:10.1016/j.coastaleng.2010.03.005.
[4] Yuwono, N., & Sriyana, I. (2022). Wave Transmission and Energy Dissipation in a Box Culvert-Type Slotted Breakwater. Advances in Technology Innovation, 7(4), 270.
[5] Koraim, A. S. (2014). Hydraulic characteristics of pile-supported L-shaped bars used as a screen breakwater. Ocean Engineering, 83, 36–51. doi:10.1016/j.oceaneng.2014.03.016.
[6] Lopa, R. T., & Rohani, I. (2018). Breakwater Analysis in Bamballoka, Pasangkayu Regency. Bandar: Journal of Civil Engineering, 1(1), 25-29. (In Indonesian).
[7] Bungin, E. R., Pallu, S., Thaha, M. A., & Lopa, R. T. (2020). The effect of asymmetric submerged structure series on wave deformation. 9 February, 2017, Pekanbaru, Indonesia. (In Indonesian).
[8] Iturrioz, A., Guanche, R., Lara, J. L., Vidal, C., & Losada, I. J. (2015). Validation of OpenFOAM® for Oscillating Water Column three-dimensional modeling. Ocean Engineering, 107, 222–236. doi:10.1016/j.oceaneng.2015.07.051.
[9] Daniel Raj, D., Sundar, V., & Sannasiraj, S. A. (2019). Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls. Renewable Energy, 132, 142–156. doi:10.1016/j.renene.2018.07.089.
[10] Elhanafi, A., Fleming, A., Macfarlane, G., & Leong, Z. (2017). Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter. Renewable Energy, 105, 209–231. doi:10.1016/j.renene.2016.12.039.
[11] Ning, D. zhi, Guo, B. ming, Wang, R. quan, Vyzikas, T., & Greaves, D. (2020). Geometrical investigation of a U-shaped oscillating water column wave energy device. Applied Ocean Research, 97(September), 102105. doi:10.1016/j.apor.2020.102105.
[12] Vyzikas, T., Deshoulières, S., Barton, M., Giroux, O., Greaves, D., & Simmonds, D. (2017). Experimental investigation of different geometries of fixed oscillating water column devices. Renewable Energy, 104, 248–258. doi:10.1016/j.renene.2016.11.061.
[13] Deng, Z., Wang, C., Wang, P., Higuera, P., & Wang, R. (2019). Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study. Energy, 187, 115941. doi:10.1016/j.energy.2019.115941.
[14] Mahnamfar, F., & Altunkaynak, A. (2017). Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems. Ocean Engineering, 130, 10–24. doi:10.1016/j.oceaneng.2016.11.054.
[15] Bouali, B., & Larbi, S. (2013). Contribution to the geometry optimization of an oscillating water column wave energy converter. Energy Procedia, 36, 565–573. doi:10.1016/j.egypro.2013.07.065.
[16] Oh, J. S., & Han, S. H. (2012). Inlet geometry effect of wave energy conversion system. Journal of Mechanical Science and Technology, 26(9), 2793–2798. doi:10.1007/s12206-012-0726-7.
[17] Triatmodjo, B. (1999). Coastal Engineering. Beta Offset, Yogyakarta, Indonesia. (In Indonesian).
[18] McCormick, M. E. (2013). Ocean wave energy conversion. Courier Corporation, Massachusetts, United States.
[19] Hughes, S. A. (1993). Physical models and laboratory techniques in coastal engineering. World Scientific Publishing Company, Singapore.
[20] Huddiankuwera, A., Rachman, T., Thaha, M. A., & Dewa, S. (2022). Wave Deformation on Sloping Hollow Breakwater. International Journal of Engineering Trends and Technology, 70(10), 188–194. doi:10.14445/22315381/IJETT-V70I10P218.
[21] Koraim, A. S., Heikal, E. M., & Abo Zaid, A. A. (2014). Hydrodynamic characteristics of porous seawall protected by submerged breakwater. Applied Ocean Research, 46, 1–14. doi:10.1016/j.apor.2014.01.003.
[22] Dean, R. G., & Dalrymple, R. A. (1984). Water wave mechanics for engineers and scientists. World Scientific Publishing Company, Singapore. doi:10.1029/eo066i024p00490-06.
[23] Soewarno, S. (1995). Hydrology: Application of Statistical Methods for Data Analysis. Nova, Bandung, Indonesia. (In Indonesian).
[24] Goel, A. (2011). ANN-Based Approach for Predicting Rating Curve of an Indian River. ISRN Civil Engineering, 2011, 1–4. doi:10.5402/2011/291370.
[25] Falcí£o, A. F. O., Sarmento, A. J. N. A., Gato, L. M. C., & Brito-Melo, A. (2020). The Pico OWC wave power plant: Its lifetime from conception to closure 1986–2018. Applied Ocean Research, 98, 102–104. doi:10.1016/j.apor.2020.102104.
[26] Gaspar, L. A., Teixeira, P. R. F., & Didier, E. (2020). Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes. Ocean Engineering, 201, 107–119. doi:10.1016/j.oceaneng.2020.107119.
[27] He, F., Zhang, H., Zhao, J., Zheng, S., & Iglesias, G. (2019). Hydrodynamic performance of a pile-supported OWC breakwater: An analytical study. Applied Ocean Research, 88, 326–340. doi:10.1016/j.apor.2019.03.022.
[28] Lee, H. H., Chiu, Y.-F., Lin, C.-Y., Chen, C.-H., & Huang, M.-H. (2016). Parametric Study on a Caisson Based OWC Wave Energy Converting System. World Journal of Engineering and Technology, 04(03), 213–219. doi:10.4236/wjet.2016.43d026.
[29] Liu, Z., Xu, C., Shi, H., & Qu, N. (2020). Wave-flume tests of a model-scaled OWC chamber-turbine system under irregular wave conditions. Applied Ocean Research, 99, 102–141. doi:10.1016/j.apor.2020.102141.
[30] Zheng, S., Zhang, Y., & Iglesias, G. (2019). Coast/breakwater-integrated OWC: A theoretical model. Marine Structures, 66, 121–135. doi:10.1016/j.marstruc.2019.04.001.
[31] Thaha, A., Maricar, F., Aboe, A. F., & Dwipuspita, A. I. (2015). The breakwater, from wave breaker to wave catcher. Procedia Engineering, 116(1), 691–698. doi:10.1016/j.proeng.2015.08.352.
[32] Didier, E., & Teixeira, P. R. F. (2024). Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater. Renewable Energy, 225, 120–297. doi:10.1016/j.renene.2024.120297.
[33] Venkateswarlu, V., Panduranga, K., Vijay, K. G., & Behera, H. (2024). Evaluation of oscillating water column efficiency in the presence of multiple bottom-standing breakwaters under oblique waves. Physics of Fluids, 36(11), 117–175. doi:10.1063/5.0237370.
[34] Gayathri, R., Chang, J. Y., Tsai, C. C., & Hsu, T. W. (2024). Wave Energy Conversion through Oscillating Water Columns: A Review. Journal of Marine Science and Engineering, 12(2), 1–22. doi:10.3390/jmse12020342.
[35] Wang, C., Zhang, Y., Xu, H., & Chen, W. (2024). Wave power extraction from an integrated system composed of a three-unit oscillating water column array and an inclined breakwater. Renewable and Sustainable Energy Reviews, 202, 114–645. doi:10.1016/j.rser.2024.114645.
[36] Tsai, C. P., Fan, C. Y., Chen, Y. C., & Ko, C. H. (2024). Experimental Study of wave pressure on breakwater-integrated OWC Wave Energy Converter. In ISOPE International Ocean and Polar Engineering Conference (ISOPE), 16-21 June, 2024, Rhodes, Greece.
[37] Zhang, Y., Zhu, W., Xu, Q., Kong, D., & Dong, X. (2024). Hydrodynamic performance of a pile-supported oscillating water column breakwater in front of a partially reflecting seawall. Physics of Fluids, 36(7), 077–139. doi:10.1063/5.0219892.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
