Bond Strength Evaluation of Waterproofing Membrane Assembly in Concrete Bridges
Downloads
Doi: 10.28991/CEJ-2025-011-02-010
Full Text: PDF
Downloads
[2] He, Q., Zhang, H., Li, J., & Duan, H. (2021). Performance evaluation of polyurethane/epoxy resin modified asphalt as adhesive layer material for steel-UHPC composite bridge deck pavements. Construction and Building Materials, 291, 123364. doi:10.1016/j.conbuildmat.2021.123364.
[3] Nafaa, S., Ashour, K., Mohamed, R., Essam, H., Emad, D., Elhenawy, M., Ashqar, H. I., Hassan, A. A., & Alhadidi, T. I. (2024). Automated Pavement Cracks Detection and Classification Using Deep Learning. 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI), 1–5. doi:10.1109/icmi60790.2024.10586098.
[4] Kruntcheva, M. R., Collop, A. C., & Thom, N. H. (2005). Effect of bond condition on flexible pavement performance. Journal of Transportation Engineering, 131(11), 880–888. doi:10.1061/(ASCE)0733-947X(2005)131:11(880).
[5] Al-Mansour, A., Zhu, Y., Lan, Y., Dang, N., Alwathaf, A. H., & Zeng, Q. (2024). Improving the adhesion between recycled plastic aggregates and the cement matrix. Reuse of Plastic Waste in Eco-efficient Concrete. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/B978-0-443-13798-3.00008-5.
[6] West, R. C., Zhang, J., & Moore, J. (2005). Evaluation of bond strength between pavement layers (No. NCAT Report 05-08). National Center for Asphalt Technology, Auburn University, Auburn, United States.
[7] Li, S., Zhang, L., Guo, P., Zhang, P., Wang, C., Sun, W., & Han, S. (2021). Characteristic analysis of acoustic emission monitoring parameters for crack propagation in UHPC-NC composite beam under bending test. Construction and Building Materials, 278, 122401. doi:10.1016/j.conbuildmat.2021.122401.
[8] Somé, S. C., Feeser, A., Jaoua, M., & Le Corre, T. (2020). Mechanical characterization of asphalt mixes inter-layer bonding based on reptation theory. Construction and Building Materials, 242, 118063. doi:10.1016/j.conbuildmat.2020.118063.
[9] Yang, K., & Li, R. (2021). Characterization of bonding property in asphalt pavement interlayer: A review. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 374–387. doi:10.1016/j.jtte.2020.10.005.
[10] Galaviz-González, J. R., Cueva, D. A., Covarrubias, P. L., & Palacios, M. Z. (2019). Bonding evaluation of asphalt emulsions used as tack coats through shear testing. Applied Sciences (Switzerland), 9(9), 1727. doi:10.3390/app9091727.
[11] Wang, L., Hou, Y., Zhang, L., & Liu, G. (2017). A combined static-and-dynamics mechanics analysis on the bridge deck pavement. Journal of Cleaner Production, 166, 209–220. doi:10.1016/j.jclepro.2017.08.034.
[12] Xu, Y., Fan, Z., Wang, Z., Shan, H., Lyu, X., Liu, Z., & Xu, S. (2024). Research on anti-shear performance of waterproof adhesive layer (WAL) in polyurethane-mixture steel-bridge pavement structure. Construction and Building Materials, 417, 135314. doi:10.1016/j.conbuildmat.2024.135314.
[13] Lei, X., Li, T., & Chen, H. (2025). Mechanical analysis and experimental study on the shear performance of waterproof adhesive layer toward concrete bridge deck pavement. Case Studies in Construction Materials, 22, e04250. doi:10.1016/j.cscm.2025.e04250.
[14] Rahman, A., Huang, H., Ai, C., Ding, H., Xin, C., & Lu, Y. (2019). Fatigue performance of interface bonding between asphalt pavement layers using four-point shear test set-up. International Journal of Fatigue, 121, 181–190. doi:10.1016/j.ijfatigue.2018.12.018.
[15] Zhang, Q., Xu, Y. H., & Wen, Z. G. (2017). Influence of water-borne epoxy resin content on performance of waterborne epoxy resin compound SBR modified emulsified asphalt for tack coat. Construction and Building Materials, 153, 774-782. doi:10.1016/j.conbuildmat.2017.07.148.
[16] Wei, F., Cao, J., Zhao, H., & Han, B. (2021). Laboratory Investigation on the Interface Bonding between Portland Cement Concrete Pavement and Asphalt Overlay. Mathematical Problems in Engineering, 2021, 1–11. doi:10.1155/2021/8831287.
[17] Ling, J., Wei, F., Zhao, H., Tian, Y., Han, B., & Chen, Z. (2019). Analysis of airfield composite pavement responses using full-scale accelerated pavement testing and finite element method. Construction and Building Materials, 212, 596–606. doi:10.1016/j.conbuildmat.2019.03.336.
[18] Mateos, A., Harvey, J., Paniagua, J., Paniagua, F., & Liu, A. F. (2017). Mechanical characterisation of concrete-asphalt interface in bonded concrete overlays of asphalt pavements. European Journal of Environmental and Civil Engineering, 21, s43–s53. doi:10.1080/19648189.2017.1311808.
[19] Leischner, S., Canon Falla, G., Gerowski, B., Rochlani, M., & Wellner, F. (2019). Mechanical Testing and Modeling of Interlayer Bonding in HMA Pavements. Transportation Research Record, 2673(11), 879–890. doi:10.1177/0361198119843254.
[20] Mohod, M. V., & Kadam, K. N. (2016). A comparative study on rigid and flexible pavement: A review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 13(3), 84-88.
[21] Zhang, W. (2017). Effect of tack coat application on interlayer shear strength of asphalt pavement: A state-of-the-art review based on application in the United States. International Journal of Pavement Research and Technology, 10(5), 434–445. doi:10.1016/j.ijprt.2017.07.003.
[22] Ali, M. H., Khalil, A. H., & Wang, Y. (2023). Experimental Study of the Effect of Tack Coats on Interlayer Bond Strength of Pavement. Sustainability (Switzerland), 15(8), 6600. doi:10.3390/su15086600.
[23] Kamal, I., & Bas, Y. (2021). Materials and technologies in road pavements - An overview. Materials Today: Proceedings, 42, 2660–2667. doi:10.1016/j.matpr.2020.12.643.
[24] Haido, J. H., Tayeh, B. A., Majeed, S. S., & Karpuzcu, M. (2021). Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material. Construction and Building Materials, 268, 121725. doi:10.1016/j.conbuildmat.2020.121725.
[25] Gao, F., Gao, X., Chen, Q., Li, Y., Gao, Z., & Wang, C. (2022). Materials and Performance of Asphalt-Based Waterproof Bonding Layers for Cement Concrete Bridge Decks: A Systematic Review. Sustainability (Switzerland), 14(23), 15500. doi:10.3390/su142315500.
[26] H., Wang, C., Niu, L., Yang, G., & Liu, L. (2022). Composition optimisation and performance evaluation of waterborne epoxy resin emulsified asphalt tack coat binder for pavement. International Journal of Pavement Engineering, 23(11), 4034–4048. doi:10.1080/10298436.2021.1932878.
[27] Liu, L., Wang, C., & Liang, Q. (2022). Preparation of a heat insulation bonding layer for roads and its heat insulation effect. Journal of Cleaner Production, 365, 132828. doi:10.1016/j.jclepro.2022.132828.
[28] DN-STR-03009. (2000). Waterproofing and Surfacing of Concrete Bridge Decks. TII Publications, Dublin, Ireland.
[29] BBA-HAPAS. (2012). Guidelines Document for the Assessment and Certification of Waterproofing Systems for Use on Concrete Decks of Highway Bridges. British Board of Agrément (BBA), Watford, United Kingdom.
[30] Russell, H. G. (2012). Waterproofing membranes for concrete bridge decks. Transportation Research Board, Washington, United States.
[31] Khan, Z. A., Al-Abdul Wahab, H. I., Asi, I., & Ramadhan, R. (1998). Comparative study of asphalt concrete laboratory compaction methods to simulate field compaction. Construction and Building Materials, 12(6–7), 373–384. doi:10.1016/S0950-0618(98)00015-4.
[32] Zhao, X., Niu, D., Zhang, P., Niu, Y., Xia, H., & Liu, P. (2022). Macro-meso multiscale analysis of asphalt concrete in different laboratory compaction methods and field compaction. Construction and Building Materials, 361, 129607. doi:10.1016/j.conbuildmat.2022.129607.
[33] Shabani, R., Sengun, E., Ozturk, H. I., Alam, B., & Yaman, I. O. (2021). Superpave Gyratory Compactor as an Alternative Design Method for Roller Compacted Concrete in the Laboratory. Journal of Materials in Civil Engineering, 33(6), 4021101. doi:10.1061/(asce)mt.1943-5533.0003714.
[34] Wang, X., Ren, J., Hu, X., Gu, X., & Li, N. (2021). Determining Optimum Number of Gyrations for Porous Asphalt Mixtures Using Superpave Gyratory Compactor. KSCE Journal of Civil Engineering, 25(6), 2010–2019. doi:10.1007/s12205-021-1005-x.
[35] Xu, J., Li, N., & Xu, T. (2022). Temperature Changes of Interlaminar Bonding Layer in Different Seasons and Effects on Mechanical Properties of Asphalt Pavement. International Journal of Pavement Research and Technology, 15(3), 589–605. doi:10.1007/s42947-021-00039-9.
[36] Zhang, H., Gao, P., Zhang, Z., & Pan, Y. (2020). Experimental study of the performance of a stress-absorbing waterproof layer for use in asphalt pavements on bridge decks. Construction and Building Materials, 254, 119290. doi:10.1016/j.conbuildmat.2020.119290.
[37] Correia, N. S., Souza, T. R., Silva, M. P. S., & Kumar, V. V. (2023). Investigations on interlayer shear strength characteristics of geosynthetic-reinforced asphalt overlay sections at Salvador International Airport. Road Materials and Pavement Design, 24(6), 1542–1558. doi:10.1080/14680629.2022.2092021.
[38] Lung, C. K., Mohd Hasan, M. R., Hamzah, M. O., Sani, A., Poovaneshvaran, S., & Ramadhansyah, P. J. (2020). Effect of temperatures and loading rates on direct shear strength of asphaltic concrete using layer-parallel direct shear test. IOP Conference Series: Materials Science and Engineering, 712(1), 12047. doi:10.1088/1757-899X/712/1/012047.
[39] Vrtis, M., Rodezno, C., West, R., Podolsky, J., Calvert, J., & Van Deusen, D. (2023). NCAT Report 23-03, National Center for Asphalt Technology, Auburn University, Auburn, United States.
[40] Recasens, R., Martínez, A., & Jiménez, F. (2006). Evaluation of Effect of Heat-Adhesive Emulsions for Tack Coats with Shear Test: From the Road Research Laboratory of Barcelona. Transportation Research Record: Journal of the Transportation Research Board, 1970, 64–70. doi:10.3141/1970-08.
[41] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley & Sons, Hoboken, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.