An Assessment of Nature-Based Solutions Water Infrastructure for Flood Risk Reduction in Unplanned Area
Downloads
Doi: 10.28991/CEJ-2025-011-05-07
Full Text: PDF
[2] Capobianco, V., Palau, R. M., Solheim, A., Gisnås, K., Gilbert, G., Danielsson, P., & van der Keur, P. (2024). The potential use of nature-based solutions as natural hazard mitigation measure for linear infrastructure in the Nordic Countries. Geoenvironmental Disasters, 11(1), 27. doi:10.1186/s40677-024-00287-4.
[3] Ari Gunawan, T., Syahril Badri Kusuma, M., Cahyono, M., & Nugroho, J. (2017). The application of backpropagation neural network method to estimate the sediment loads. MATEC Web of Conferences, 101. doi:10.1051/matecconf/201710105016.
[4] Takagi, H., Esteban, M., Mikami, T., & Fujii, D. (2016). Projection of coastal floods in 2050 Jakarta. Urban Climate, 17, 135–145. doi:10.1016/j.uclim.2016.05.003.
[5] Bennett, W. G., Karunarathna, H., Xuan, Y., Kusuma, M. S. B., Farid, M., Kuntoro, A. A., Rahayu, H. P., Kombaitan, B., Septiadi, D., Kesuma, T. N. A., Haigh, R., & Amaratunga, D. (2023). Modelling compound flooding: a case study from Jakarta, Indonesia. Natural Hazards, 118(1), 277–305. doi:10.1007/s11069-023-06001-1.
[6] Chrysanti, A., Adhani, A., Azkiarizqi, I. N., Adityawan, M. B., Kusuma, M. S. B., & Cahyono, M. (2024). Assessing Compound Coastal–Fluvial Flood Impacts and Resilience Under Extreme Scenarios in Demak, Indonesia. Sustainability (Switzerland), 16(23), 10315. doi:10.3390/su162310315.
[7] Supratman, M., Kusuma, M. S. B., Cahyono, M., & Kuntoro, A. A. (2024). Flood Hazard Assessment Due to Changes in Land Use and Cover. Civil Engineering Journal (Iran), 10(12), 3874–3891. doi:10.28991/CEJ-2024-010-12-04.
[8] Alborzi, A., Zhao, Y., Nazemi, A., Mirchi, A., Mallakpour, I., Moftakhari, H., Ashraf, S., Izadi, R., & AghaKouchak, A. (2022). The tale of three floods: From extreme events and cascades of highs to anthropogenic floods. Weather and Climate Extremes, 38, 100495. doi:10.1016/j.wace.2022.100495.
[9] Rahayu, R., Mathias, S. A., Reaney, S., Vesuviano, G., Suwarman, R., & Ramdhan, A. M. (2023). Impact of land cover, rainfall and topography on flood risk in West Java. Natural Hazards, 116(2), 1735–1758. doi:10.1007/s11069-022-05737-6.
[10] Farahnaz, N., Kuntoroa, A. A., & Kusuma, M. S. B. (2020). Statistical downscaling for the projection of the keetch byram drought index in the Barito Basin. International Journal on Advanced Science, Engineering and Information Technology, 10(2), 873–879. doi:10.18517/ijaseit.10.2.10102.
[11] Vojinovic, Z., Alves, A., Gómez, J. P., Weesakul, S., Keerakamolchai, W., Meesuk, V., & Sanchez, A. (2021). Effectiveness of small- and large-scale Nature-Based Solutions for flood mitigation: The case of Ayutthaya, Thailand. Science of the Total Environment, 789, 147725. doi:10.1016/j.scitotenv.2021.147725.
[12] Sengara, W., Latief, H., & Kusuma, M. S. B. (2008). Disaster Management in Central Java Province, Indonesia. Geotechnical Engineering for Disaster Mitigation and Rehabilitation, Berlin, Springer. doi:10.1007/978-3-540-79846-0.
[13] Kusuma, M. S. B., Ragayu, R. A., & Cahyono, M. (2009). Development study of turbulent κ-ε model for recirculation flow III: Two dimension recirculation flow in a reservoir. ITB Journal of Engineering Science, 41 B(1), 1–16. doi:10.5614/itbj.eng.sci.2009.41.1.1.
[14] Enung, Kusuma, M. S. B., Kardhana, H., Suryadi, Y., & Rohmat, F. I. W. (2022). Hourly Discharge Prediction Using Long Short-Term Memory Recurrent Neural Network (Lstm-Rnn) in the Upper Citarum River. International Journal of GEOMATE, 23(98), 147–154. doi:10.21660/2022.98.3462.
[15] Keech, D., Clarke, L., & Short, C. (2023). Nature-based solutions in flood risk management: Unlocking spatial, functional and policy perceptions amongst practitioners in South-West England. Nature-Based Solutions, 4, 100096. doi:10.1016/j.nbsj.2023.100096.
[16] Kesuma, T. N. A., Kusuma, M. S. B., Farid, M., Kuntoro, A. A., & Rahayu, H. P. (2022). an Assessment of Flood Hazards Due To the Breach of the Manggarai Flood Gate. International Journal of GEOMATE, 23(95), 104–111. doi:10.21660/2022.95.3055.
[17] Prakoso, W. G., Irawan, P., & Mahfudz, M. (2020). Hydrological Risk Valuation on the Design of Sukamahi Dry Dam, Bogor, West Java. IOP Conference Series: Earth and Environmental Science, 556(1), 012014. doi:10.1088/1755-1315/556/1/012014.
[18] Ignatius, S., Soeryantono, H., Anggraheni, E., & Sutjiningsih, D. (2019). Analysis of flood inundation in North Sunter on the North Sunter Polder system performance. IOP Conference Series: Materials Science and Engineering, 669(1), 012039. doi:10.1088/1757-899X/669/1/012039.
[19] Sari, S. P., & Suhendri. (2018). Potential of Rainwater System for Domestic Building in Jakarta. IOP Conference Series: Earth and Environmental Science, 152(1), 012002. doi:10.1088/1755-1315/152/1/012002.
[20] Farid, M., Pratama, M. I., Kuntoro, A. A., Adityawan, M. B., Rohmat, F. I. W., & Moe, I. R. (2022). Flood Prediction due to Land Cover Change in the Ciliwung River Basin. International Journal of Technology, 13(2), 356–366. doi:10.14716/ijtech.v13i2.4662.
[21] Theochari, A. P., & Baltas, E. (2024). The Nature-Based Solutions and climate change scenarios toward flood risk management in the greater Athens area”Greece. Natural Hazards, 120(5), 4729–4747. doi:10.1007/s11069-024-06409-3.
[22] Costa, S., Peters, R., Martins, R., Postmes, L., Keizer, J. J., & Roebeling, P. (2021). Effectiveness of nature-based solutions on pluvial flood hazard mitigation: The case study of the city of Eindhoven (the Netherlands). Resources, 10(3), 24. doi:10.3390/resources10030024.
[23] Corgo, J., Cruz, S. S., & Conceiçí£o, P. (2024). Nature-based solutions in spatial planning and policies for climate change adaptation: A literature review. Ambio, 1599–1617. doi:10.1007/s13280-024-02052-1.
[24] Pellerey, V., & Torabi Moghadam, S. (2025). A place-based framework for assessing the effectiveness of inclusive climate actions for nature-based solutions in cities. Journal of Cleaner Production, 486, 144566. doi:10.1016/j.jclepro.2024.144566.
[25] Azadgar, A., Gańcza, A., Asl, S. R., Salata, S., & Nyka, L. (2025). Optimizing nature-based solutions for urban flood risk mitigation: A multi-objective genetic algorithm approach in Gdańsk, Poland. Science of The Total Environment, 963, 178303. doi:10.1016/j.scitotenv.2024.178303.
[26] Bayissa, Y., Srinivasan, R., Hunink, J., Nyolei, D., Moges, S., de Andrade Costa, D., Tadesse, D., Melesse, A., & Tilahun, S. (2025). Evaluating the potential of Nature-based solutions to mitigate land use and climate change impacts on the hydrology of the Gefersa and Legedadi watersheds in Ethiopia. Journal of Hydrology: Regional Studies, 57, 102130. doi:10.1016/j.ejrh.2024.102130.
[27] P, A., N.R, C., & Firoz C, M. (2024). A framework for urban pluvial flood resilient spatial planning through blue-green infrastructure. International Journal of Disaster Risk Reduction, 103(February), 104342. doi:10.1016/j.ijdrr.2024.104342.
[28] Ghosh, P., Sudarsan, J. S., & Nithiyanantham, S. (2024). Nature-Based Disaster Risk Reduction of Floods in Urban Areas. Water Resources Management, 38(6), 1847–1866. doi:10.1007/s11269-024-03757-4.
[29] Ferrario, F., Mourato, J. M., Rodrigues, M. S., & Dias, L. F. (2024). Evaluating Nature-based Solutions as urban resilience and climate adaptation tools: A meta-analysis of their benefits on heatwaves and floods. Science of the Total Environment, 950. doi:10.1016/j.scitotenv.2024.175179.
[30] Esraz-Ul-Zannat, Md., Dedekorkut-Howes, A., & Morgan, E. A. (2024). A review of nature-based infrastructures and their effectiveness for urban flood risk mitigation. WIREs Climate Change, 15(5), e889. doi:10.1002/wcc.889.
[31] Zhu, Q., Klaar, M., Willis, T., & Holden, J. (2024). A Quantitative Review of Natural Flood Management Research. WIREs Water, 12(1), 1765. doi:10.1002/wat2.1765.
[32] BAPPEDA. (2022). Regional medium-term development plan. BAPPEDA Jakarta Provincial Government, Jakarta, Indonesia. Available online: https://bappeda.jakarta.go.id/rpjmd/ (accessed on April 2025).
[33] IUCN. (2020). IUCN Global Standard for Nature-based Solutions: a user-friendly framework for the verification, design and scaling up of NbS: first edition. In IUCN Global Standard for Nature-based Solutions: a user-friendly framework for the verification, design and scaling up of NbS: first edition. IUCN International Union for Conservation of Nature, Gland, Switzerland. doi:10.2305/iucn.ch.2020.08.en.
[34] Sari, P., Legono, D., & Sujono, J. (2018). Performance of Retarding Basin in Flood Disaster Risk Mitigation in Welang River, East Java Province, Indonesia. Journal of the Civil Engineering Forum, 4(2), 109. doi:10.22146/jcef.31938.
[35] Ferreira, C. S. S., KaСanin-Grubin, M., Solomun, M. K., Sushkova, S., Minkina, T., Zhao, W., & Kalantari, Z. (2023). Wetlands as nature-based solutions for water management in different environments. Current Opinion in Environmental Science and Health, 33. doi:10.1016/j.coesh.2023.100476.
[36] Wurbs, R. A. (2021). Monthly river flows in Texas for natural and developed conditions. Water Cycle, 2, 1–14. doi:10.1016/j.watcyc.2020.10.001.
[37] Zhao, Y., Ji, B., Liu, R., Ren, B., & Wei, T. (2020). Constructed treatment wetland: Glance of development and future perspectives. Water Cycle, 1, 104–112. doi:10.1016/j.watcyc.2020.07.002.
[38] El Bouzidi, A., Anouar, A., & Bouzziri, M. (2024). Management and valuation of rainwater by alternative techniques, case of the university of Settat, in Morocco. Water Cycle, 5, 109–120. doi:10.1016/j.watcyc.2024.03.001.
[39] Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z., & Sanchez, A. (2019). Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. Journal of Environmental Management, 239(March), 244–254. doi:10.1016/j.jenvman.2019.03.036.
[40] Auerswald, K., Moyle, P., Paul Seibert, S., & Geist, J. (2019). HESS Opinions: Socio-economic and ecological trade-offs of flood management-benefits of a transdisciplinary approach. Hydrology and Earth System Sciences, 23(2), 1035–1044. doi:10.5194/hess-23-1035-2019.
[41] Babí Almenar, J., Elliot, T., Rugani, B., Philippe, B., Navarrete Gutierrez, T., Sonnemann, G., & Geneletti, D. (2021). Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy, 100. doi:10.1016/j.landusepol.2020.104898.
[42] Chiu, Y. Y., Raina, N., & Chen, H. E. (2022). Evolution of flood defense strategies: Toward nature-based solutions. Environments, 9(1), 2. doi:10.3390/environments9010002.
[43] Christiana, D. W. (2023). Building Resilience through Nature-based Solutions: Exploring the Urban-Rural Linkages in Flood Mitigation Strategies for Jayapura. Smart City, 3(2), 3. doi:10.56940/sc.v3.i2.3.
[44] Guimarí£es, L. F., Teixeira, F. C., Pereira, J. N., Becker, B. R., Oliveira, A. K. B., Lima, A. F., Veról, A. P., & Miguez, M. G. (2021). The challenges of urban river restoration and the proposition of a framework towards river restoration goals. Journal of Cleaner Production, 316. doi:10.1016/j.jclepro.2021.128330.
[45] Ibrahim, A. S., Al Zayed, I. S., Abdelhaleem, F. S., Afify, M. M., Ahmed, A., & Abd-Elaty, I. (2023). Identifying cost-effective locations of storage dams for rainfall harvesting and flash flood mitigation in arid and semi-arid regions. Journal of Hydrology: Regional Studies, 50, 101526. doi:10.1016/j.ejrh.2023.101526.
[46] Kaiser, N. N., Ghermandi, A., Feld, C. K., Hershkovitz, Y., Palt, M., & Stoll, S. (2021). Societal benefits of river restoration – Implications from social media analysis. Ecosystem Services, 50. doi:10.1016/j.ecoser.2021.101317.
[47] Reu Junqueira, J., Serrao-Neumann, S., & White, I. (2022). Using green infrastructure as a social equity approach to reduce flood risks and address climate change impacts: A comparison of performance between cities and towns. Cities, 131, 104051. doi:10.1016/j.cities.2022.104051.
[48] Xu, C., Tang, T., Jia, H., Xu, M., Xu, T., Liu, Z., Long, Y., & Zhang, R. (2019). Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resources, Conservation and Recycling, 151, 1–10. doi:10.1016/j.resconrec.2019.104478.
[49] Kíµiv-Vainik, M., Kill, K., Espenberg, M., Uuemaa, E., Teemusk, A., Maddison, M., Palta, M. M., Török, L., Mander, íœ., Scholz, M., & Kasak, K. (2022). Urban stormwater retention capacity of nature-based solutions at different climatic conditions. Nature-Based Solutions, 2, 100038. doi:10.1016/j.nbsj.2022.100038.
[50] Ruangpan, L., Vojinovic, Z., PlavСić, J., Curran, A., Rosic, N., Pudar, R., Savic, D., & Brdjanovic, D. (2024). Economic assessment of nature-based solutions to reduce flood risk and enhance co-benefits. Journal of Environmental Management, 352. doi:10.1016/j.jenvman.2023.119985.
[51] Tayefi Nasrabadi, M. (2022). How do nature-based solutions contribute to urban landscape sustainability? Environment, Development and Sustainability, 24(1), 576–591. doi:10.1007/s10668-021-01456-3.
[52] Ramírez-Agudelo, N. A., Badia, M., Villares, M., & Roca, E. (2022). Assessing the benefits of nature-based solutions in the Barcelona metropolitan area based on citizen perceptions. Nature-Based Solutions, 2, 100021. doi:10.1016/j.nbsj.2022.100021.
[53] Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN International Union for Conservation of Nature, Gland, Switzerland. doi:10.2305/iucn.ch.2016.13.en.
[54] Jakubínskí½, J., Prokopová, M., RaŠ¡ka, P., Salvati, L., Bezak, N., Cudlín, O., Cudlín, P., Purkyt, J., Vezza, P., Camporeale, C., DanÄ›k, J., Pástor, M., & LepeŠ¡ka, T. (2021). Managing floodplains using nature-based solutions to support multiple ecosystem functions and services. WIREs Water, 8(5), e1545. doi:10.1002/wat2.1545.
[55] Mubeen, A., Ruangpan, L., Vojinovic, Z., Sanchez Torrez, A., & PlavŠ¡ić, J. (2021). Planning and Suitability Assessment of Large-scale Nature-based Solutions for Flood-risk Reduction. Water Resources Management, 35(10), 3063–3081. doi:10.1007/s11269-021-02848-w.
[56] Oral, H. V., Carvalho, P., Gajewska, M., Ursino, N., Masi, F., van Hullebusch, E. D., Kazak, J. K., Exposito, A., Cipolletta, G., Andersen, T. R., Finger, D. C., Simperler, L., Regelsberger, M., Rous, V., Radinja, M., Buttiglieri, G., Krzeminski, P., Rizzo, A., Dehghanian, K., ... Zimmermann, M. (2020). A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Systems, 2(1), 112–136. doi:10.2166/bgs.2020.932.
[57] Qi, Y., Chan, F. K. S., Thorne, C., O'donnell, E., Quagliolo, C., Comino, E., Pezzoli, A., Li, L., Griffiths, J., Sang, Y., & Feng, M. (2020). Addressing challenges of urban water management in chinese sponge cities via nature-based solutions. Water (Switzerland), 12(10), 2788. doi:10.3390/w12102788.
[58] Edamo, M. L., Bushira, K. M., Ukumo, T. Y., Ayele, M. A., Alaro, M. A., & Borko, H. B. (2022). Effect of climate change on water availability in Bilate catchment, Southern Ethiopia. Water Cycle, 3, 86–99. doi:10.1016/j.watcyc.2022.06.001.
[59] Balzan, M. V, Zulian, G., Maes, J., & Borg, M. (2021). Assessing urban ecosystem services to prioritise nature-based solutions in a high-density urban area. Nature-Based Solutions, 1, 100007. doi:10.1016/j.nbsj.2021.100007.
[60] Battemarco, B. P., Tardin-Coelho, R., Veról, A. P., de Sousa, M. M., da Fontoura, C. V. T., Figueiredo-Cunha, J., Barbedo, J. M. R., & Miguez, M. G. (2022). Water dynamics and blue-green infrastructure (BGI): Towards risk management and strategic spatial planning guidelines. Journal of Cleaner Production, 333. doi:10.1016/j.jclepro.2021.129993.
[61] Biswal, B. K., Bolan, N., Zhu, Y. G., & Balasubramanian, R. (2022). Nature-based Systems (NbS) for mitigation of stormwater and air pollution in urban areas: A review. Resources, Conservation and Recycling, 186, 106578. doi:10.1016/j.resconrec.2022.106578.
[62] Fowdar, H. S., Neo, T. H., Ong, S. L., Hu, J., & McCarthy, D. T. (2022). Performance analysis of a stormwater green infrastructure model for flow and water quality predictions. Journal of Environmental Management, 316. doi:10.1016/j.jenvman.2022.115259.
[63] García Sánchez, F., & Govindarajulu, D. (2023). Integrating blue-green infrastructure in urban planning for climate adaptation: Lessons from Chennai and Kochi, India. Land Use Policy, 124, 0–3. doi:10.1016/j.landusepol.2022.106455.
[64] Nehren, U., Arce-Mojica, T., Barrett, A. C., Cueto, J., Doswald, N., Janzen, S., Lange, W., Vargas, A. O., Pirazan-Palomar, L., Renaud, F. G., Sandholz, S., Sebesvari, Z., Sudmeier-Rieux, K., & Walz, Y. (2023). Towards a typology of nature-based solutions for disaster risk reduction. Nature-Based Solutions, 3, 100057. doi:10.1016/j.nbsj.2023.100057.
[65] Schindler, S., Sebesvari, Z., Damm, C., Euller, K., Mauerhofer, V., Schneidergruber, A., Biró, M., Essl, F., Kanka, R., Lauwaars, S. G., Schulz-Zunkel, C., van der Sluis, T., Kropik, M., Gasso, V., Krug, A., Pusch, M. T., Zulka, K. P., Lazowski, W., Hainz-Renetzeder, C., ... Wrbka, T. (2014). Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landscape Ecology, 29(2), 229–244. doi:10.1007/s10980-014-9989-y.
[66] Wang, Y., Huang, C., Wu, G., & Wang, W. (2022). Status and challenges of water resources and supply in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) of China. Water Cycle, 3, 65–70. doi:10.1016/j.watcyc.2022.05.001.
[67] Maheng, D., Bhattacharya, B., Zevenbergen, C., & Pathirana, A. (2024). Changing Urban Temperature and Rainfall Patterns in Jakarta: A Comprehensive Historical Analysis. Sustainability (Switzerland), 16(1), 1–20. doi:10.3390/su16010350.
[68] Zhang, H., Liu, X., Xie, Y., Gou, Q., Li, R., Qiu, Y., Hu, Y., & Huang, B. (2022). Assessment and Improvement of Urban Resilience to Flooding at a Subdistrict Level Using Multi-Source Geospatial Data: Jakarta as a Case Study. Remote Sensing, 14(9), 2010. doi:10.3390/rs14092010.
[69] Wijayanti, P., Zhu, X., Hellegers, P., Budiyono, Y., & van Ierland, E. C. (2017). Estimation of river flood damages in Jakarta, Indonesia. Natural Hazards, 86(3), 1059–1079. doi:10.1007/s11069-016-2730-1.
[70] Budiyono, Y., Aerts, J. C. J. H., Tollenaar, D., & Ward, P. J. (2016). River flood risk in Jakarta under scenarios of future change. Natural Hazards and Earth System Sciences, 16(3), 757–774. doi:10.5194/nhess-16-757-2016.
[71] Gao, P., Li, P., Zhao, B., Xu, R., Zhao, G., Sun, W., & Mu, X. (2017). Use of double mass curves in hydrologic benefit evaluations. Hydrological Processes, 31(26), 4639–4646. doi:10.1002/hyp.11377.
[72] Riazi, M., Khosravi, K., Shahedi, K., Ahmad, S., Jun, C., Bateni, S. M., & Kazakis, N. (2023). Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms. Science of the Total Environment, 871, 162066. doi:10.1016/j.scitotenv.2023.162066.
[73] Shahimi, S. N. A., Halim, M. A., & Khalid, N. (2021). Comparison of Watershed Delineation Accuracy using Open Source DEM Data in Large Area. IOP Conference Series: Earth and Environmental Science, 767(1), 012029. doi:10.1088/1755-1315/767/1/012029.
[74] Li, L., Yang, J., & Wu, J. (2019). A method of watershed delineation for flat terrain using sentinel-2A imagery and DEM: A case study of the Taihu basin. ISPRS International Journal of Geo-Information, 8(12), 528. doi:10.3390/ijgi8120528.
[75] Zafar, Z., Zubair, M., Zha, Y., Fahd, S., & Ahmad Nadeem, A. (2024). Performance assessment of machine learning algorithms for mapping of land use/land cover using remote sensing data. Egyptian Journal of Remote Sensing and Space Science, 27(2), 216–226. doi:10.1016/j.ejrs.2024.03.003.
[76] Ben Khélifa, W., & Mosbahi, M. (2022). Modeling of rainfall-runoff process using HEC-HMS model for an urban ungauged watershed in Tunisia. Modeling Earth Systems and Environment, 8(2), 1749–1758. doi:10.1007/s40808-021-01177-6.
[77] Hassan, Z., Razali, N. H. M., Kamarudzaman, A. N., Salwa, M. Z. M., & Nordin, N. A. S. (2023). Preliminary Study on Flood Simulation using the HEC-HMS Model for Muda River, Malaysia. IOP Conference Series: Earth and Environmental Science, 1135(1), 012021. doi:10.1088/1755-1315/1135/1/012021.
[78] AL-Hussein, A. A. M., Khan, S., Ncibi, K., Hamdi, N., & Hamed, Y. (2022). Flood Analysis Using HEC-RAS and HEC-HMS: A Case Study of Khazir River (Middle East”Northern Iraq). Water (Switzerland), 14(22), 3779. doi:10.3390/w14223779.
[79] Mishra, B. K., Rafiei Emam, A., Masago, Y., Kumar, P., Regmi, R. K., & Fukushi, K. (2018). Assessment of future flood inundations under climate and land use change scenarios in the Ciliwung River Basin, Jakarta. Journal of Flood Risk Management, 11, S1105–S1115. doi:10.1111/jfr3.12311.
[80] Nkeki, F. N., Bello, E. I., & Agbaje, I. G. (2022). Flood risk mapping and urban infrastructural susceptibility assessment using a GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria. International Journal of Disaster Risk Reduction, 77(January), 103097. doi:10.1016/j.ijdrr.2022.103097.
[81] Tunas, I. G., Arafat, Y., & Azikin, H. (2019). Integration of Digital Elevation Model (DEM) and HEC-RAS Hydrodynamic Model for flood routing. IOP Conference Series: Materials Science and Engineering, 620(1), 012026. doi:10.1088/1757-899X/620/1/012026.
[82] Corsita, L., Muntalif, B. S., & Salami, I. R. S. (2014). The Hydrological Regimes,Water Quality Assesment and Trophic Status Of The Reservoir (Case Study: Jatiluhur Cascade Citarum Reservoir). International Conference on Latest Trends in Food, Biological & Ecological Sciences (ICLTFBE'14) July 15-16, Phuket, Thailand. doi:10.17758/iaast.a0714022.
[83] Wardhani, E., & Sugiarti, Z. A. (2021). Jatiluhur Reservoir Water Quality Analysis at Various Depths. Precipitation Journal: Communication Media and Environmental Engineering Development, 18(3), 400–411. doi:10.14710/presipitasi.v18i3.400-411.
[84] Nasution, B. I., Saputra, F. M., Kurniawan, R., Ridwan, A. N., Fudholi, A., & Sumargo, B. (2022). Urban vulnerability to floods investigation in jakarta, Indonesia: A hybrid optimized fuzzy spatial clustering and news media analysis approach. International Journal of Disaster Risk Reduction, 83, 103407. doi:10.1016/j.ijdrr.2022.103407.
[85] Lu, P., Sun, Y., & Steffen, N. (2023). Scenario-based performance assessment of green-grey-blue infrastructure for flood-resilient spatial solution: A case study of Pazhou, Guangzhou, greater Bay area. Landscape and Urban Planning, 238, 104804. doi:10.1016/j.landurbplan.2023.104804.
[86] Chairat, S., & Gheewala, S. H. (2024). The conceptual quantitative assessment framework for Nature-based Solutions (NbS). Nature-Based Solutions, 6(July), 100152. doi:10.1016/j.nbsj.2024.100152.
[87] Zang, Y., Meng, Y., Guan, X., Lv, H., & Yan, D. (2022). Study on urban flood early warning system considering flood loss. International Journal of Disaster Risk Reduction, 77(May), 103042. doi:10.1016/j.ijdrr.2022.103042.
[88] Yin, D., Chen, Y., Jia, H., Wang, Q., Chen, Z., Xu, C., Li, Q., Wang, W., Yang, Y., Fu, G., & Chen, A. S. (2021). Sponge city practice in China: A review of construction, assessment, operational and maintenance. Journal of Cleaner Production, 280, 124963. doi:10.1016/j.jclepro.2020.124963.
[89] Li, Q., Wang, F., Yu, Y., Huang, Z., Li, M., & Guan, Y. (2019). Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China. Journal of Environmental Management, 231(October), 10–20. doi:10.1016/j.jenvman.2018.10.024.
[90] Freni, G., & Liuzzo, L. (2019). Effectiveness of rainwater harvesting systems for flood reduction in residential urban areas. Water (Switzerland), 11(7), 1389. doi:10.3390/w11071389.
[91] Jamali, B., Bach, P. M., & Deletic, A. (2020). Rainwater harvesting for urban flood management – An integrated modelling framework. Water Research, 171, 115372. doi:10.1016/j.watres.2019.115372.
[92] Custódio, D. A., & Ghisi, E. (2023). Impact of residential rainwater harvesting on stormwater runoff. Journal of Environmental Management, 326. doi:10.1016/j.jenvman.2022.116814.
[93] Huynh Thi Ngoc, C., Back, Y., Funke, F., Hauser, M., & Kleidorfer, M. (2024). Implementation of Nature-Based Solutions in Urban Water Management in Viet Nam, a Comparison among European and Asian Countries. Sustainability (Switzerland), 16(20), 8812. doi:10.3390/su16208812.
[94] Sciuto, L., Licciardello, F., Giuffrida, E. R., Barresi, S., Scavera, V., Verde, D., Barbagallo, S., & Cirelli, G. L. (2025). Hydrological-hydraulic modelling to assess Nature-Based Solutions for flood risk mitigation in an urban area of Catania (Sicily, Italy). Nature-Based Solutions, 7. doi:10.1016/j.nbsj.2024.100210.
[95] Nugraha, G. U., Lubis, R. F., Bakti, H., & Hartanto, P. (2021). Groundwater Recharge Estimation Using Water Budget and Water Table Fluctuation Method in the Jakarta Groundwater Basin. Indonesian Association of Geologists Journal, 1(1), 25–38. doi:10.51835/iagij.2021.1.1.12.
[96] Ershad Sarabi, S., Han, Q., L. Romme, A. G., de Vries, B., & Wendling, L. (2019). Key Enablers of and Barriers to the Uptake and Implementation of Nature-Based Solutions in Urban Settings: A Review. Resources, 8(3), 121. doi:10.3390/resources8030121.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
