Advanced Reclaimed Asphalt Pavement Treatment for Sustainable Pervious Concrete: Optimizing Strength, Hydraulic Performance and Long-Term Durability
Downloads
Doi: 10.28991/CEJ-2025-011-04-019
Full Text: PDF
[2] Abraham, S. M., & Ransinchung, G. D. R. N. (2018). Influence of RAP aggregates on strength, durability and porosity of cement mortar. Construction and Building Materials, 189, 1105–1112. doi:10.1016/j.conbuildmat.2018.09.069.
[3] Debbarma, S., Selvam, M., & Singh, S. (2020). Can flexible pavements' waste (RAP) be utilized in cement concrete pavements? – A critical review. Construction and Building Materials, 259, 120417. doi:10.1016/j.conbuildmat.2020.120417.
[4] Singh, S., Ransinchung, G. D., & Kumar, P. (2017). An economical processing technique to improve RAP inclusive concrete properties. Construction and Building Materials, 148, 734–747. doi:10.1016/j.conbuildmat.2017.05.030.
[5] Singh, S., Ransinchung, G. D. R. N., & Kumar, P. (2019). Feasibility study of RAP aggregates in cement concrete pavements. Road Materials and Pavement Design, 20(1), 151–170. doi:10.1080/14680629.2017.1380071.
[6] Aprianti, E. (2017). A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II. Journal of cleaner production, 142, 4178-4194. doi:10.1016/j.jclepro.2015.12.115.
[7] Khankhaje, E., Rafieizonooz, M., Salim, M. R., Khan, R., Mirza, J., Siong, H. C., & Salmiati. (2018). Sustainable clean pervious concrete pavement production incorporating palm oil fuel ash as cement replacement. Journal of Cleaner Production, 172, 1476–1485. doi:10.1016/j.jclepro.2017.10.159.
[8] RGA Concrete Contractors. (2025). Sustainable Concrete Innovations in 2025: The Future of Eco-Friendly Construction. RGA Concrete Contractors LLC, Texas, Unites States. Available online: https://rgaconcretellc.com/ (accessed on March 2025).
[9] Jessup, K., Parker, S. S., Randall, J. M., Cohen, B. S., Roderick-Jones, R., Ganguly, S., & Sourial, J. (2021). Planting Stormwater Solutions: A methodology for siting nature-based solutions for pollution capture, habitat enhancement, and multiple health benefits. Urban Forestry and Urban Greening, 64, 127300. doi:10.1016/j.ufug.2021.127300.
[10] Nnadi, E. O., Newman, A. P., Coupe, S. J., & Mbanaso, F.U. (2015). Stormwater harvesting for irrigation purposes: An investigation of chemical quality of water recycled in pervious pavement system. Journal of Environmental Management, 147, 246–256. doi:10.1016/j.jenvman.2014.08.020.
[11] Park, J. H., Kim, Y. U., Jeon, J., Wi, S., Chang, S. J., & Kim, S. (2021). Effect of eco-friendly pervious concrete with amorphous metallic fiber on evaporative cooling performance. Journal of Environmental Management, 297, 113269. doi:10.1016/j.jenvman.2021.113269.
[12] Tyner, J. S., Wright, W. C., & Dobbs, P. A. (2009). Increasing exfiltration from pervious concrete and temperature monitoring. Journal of Environmental Management, 90(8), 2636–2641. doi:10.1016/j.jenvman.2009.02.007.
[13] ISCP. (2025). Low-Carbon Concrete Efforts Drive Sustainable Infrastructure Forward. International Society for Concrete Pavements, California, United States. Available online: https://www.concretepavements.org/ (accessed on March 2025).
[14] Kayhanian, M., Li, H., Harvey, J. T., & Liang, X. (2019). Application of permeable pavements in highways for stormwater runoff management and pollution prevention: California research experiences. International Journal of Transportation Science and Technology, 8(4), 358–372. doi:10.1016/j.ijtst.2019.01.001.
[15] Assi, L., Carter, K., Deaver, E. (Eddie), Anay, R., & Ziehl, P. (2018). Sustainable concrete: Building a greener future. Journal of Cleaner Production, 198, 1641–1651. doi:10.1016/j.jclepro.2018.07.123.
[16] Tennis, P. D., Leming, M. L., & Akers, D. J. (2004). Pervious concrete pavements (No. PCA Serial No. 2828): Vol. Portland C, 1-32.
[17] Chandrappa, A. K., & Biligiri, K. P. (2016). Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach. Construction and Building Materials, 123, 627–637. doi:10.1016/j.conbuildmat.2016.07.035.
[18] Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50(8), 524–529. doi:10.1016/j.conbuildmat.2013.09.022.
[19] Mhaya, A. M., Shahidan, S., Mohd Zuki, S. S., Hakim, S. J. S., Wan Ibrahim, M. H., Mohammad Azmi, M. A., & Huseien, G. F. (2025). Modified pervious concrete containing biomass aggregate: Sustainability and environmental benefits. Ain Shams Engineering Journal, 16(3), 103324. doi:10.1016/j.asej.2025.103324.
[20] ACI. (2010). ACI 522R-10 Report on Pervious Concrete. American Concrete Institute, Michigan, United States.
[21] Dhruv, S. D., & Dhruv, D. K. (2022). Anomalous current–voltage and impedance behaviour in heterojunction diode. Materials Today: Proceedings, 55, A1–A6. doi:10.1016/j.matpr.2022.04.312.
[22] Jin, W., Jiang, L., Chen, L., Gu, Y., Guo, M., Han, L., Ben, X., Yuan, H., & Lin, Z. (2021). Preparation and characterization of capric-stearic acid/montmorillonite/graphene composite phase change material for thermal energy storage in buildings. Construction and Building Materials, 301, 124102. doi:10.1016/j.conbuildmat.2021.124102.
[23] Singh, S., Ransinchung R.N., G. D., & Kumar, P. (2018). Laboratory Investigation of Concrete Pavements Containing Fine RAP Aggregates. Journal of Materials in Civil Engineering, 30(2), 4017279. doi:10.1061/(asce)mt.1943-5533.0002124.
[24] Singh, S., Ransinchung, G. D., Debbarma, S., & Kumar, P. (2018). Utilization of reclaimed asphalt pavement aggregates containing waste from Sugarcane Mill for production of concrete mixes. Journal of Cleaner Production, 174, 42-52. doi:10.1016/j.jclepro.2017.10.179.
[25] Singh, S., Ransinchung, G. D., & Monu, K. (2019). Sustainable lean concrete mixes containing wastes originating from roads and industries. Construction and Building Materials, 209, 619–630. doi:10.1016/j.conbuildmat.2019.03.122.
[26] Zhang, J., Sesay, T., You, Q., & Jing, H. (2022). Maximizing the Application of RAP in Asphalt Concrete Pavements and Its Long-Term Performance: A Review. Polymers, 14(21), 4736. doi:10.3390/polym14214736.
[27] Sandra, A. K., Kumar J, S., Sharma, S. K., & Sssv, G. R. (2023). Properties of pavement quality concrete prepared with coarse RAP containing different percentages of asphalt. Urban, Planning and Transport Research, 11(1), 2154257. doi:10.1080/21650020.2022.2154257.
[28] Uygunoğlu, T., Bekir Topçu, I., & Çinar Resuloğullari, E. (2024). Durability effect of reclaimed asphalt aggregate on concrete road pavement. Materiales de Construccion, 74(353), 338. doi:10.3989/mc.2024.356823.
[29] Sahdeo, S. K., Ransinchung, G., & Nandi, S. (2024). Investigating the Suitability of Agricultural and Industrial Wastes for Production of RAP Inclusive Pervious Concrete Pavement Mixes: A Sustainable Approach. International Journal of Pavement Research and Technology, 17(5), 1309–1326. doi:10.1007/s42947-023-00303-0.
[30] Chen, Z., Luo, S., Liu, S., Shao, J., He, Y., & Li, Y. (2025). Effect of emulsifier on the interface structure and performance of reclaimed asphalt pavement aggregate cement concrete. Construction and Building Materials, 458, 130923. doi:10.1016/j.conbuildmat.2024.139603.
[31] BIS-IS 2386-4. (1963a). Methods of test for aggregates for concrete, Part 4: Mechanical properties (IS 2386-4). Bureau of Indian Standards, New Delhi, India.
[32] Bureau of Indian Standards (BIS). (1963b). Methods of test for aggregates for concrete, Part 1: Particle size and shape (IS 2386-1). Bureau of Indian Standards, New Delhi, India.
[33] Bureau of Indian Standards (BIS). (1963c). Methods of test for aggregates for concrete, Part 3: Specific gravity, density, voids, absorption and bulking (IS 2386-3). Bureau of Indian Standards, New Delhi, India.
[34] BIS-IS 8112: 43. (1989). IS 8112: 43 grade Ordinary Portland Cement – Specification. Bureau of Indian Standards, New Delhi, India.
[35] Bureau of Indian Standards (BIS). (1988a). IS 4031-4: Methods of physical tests for hydraulic cement, Part 4: Determination of consistency of standard cement paste. Bureau of Indian Standards, New Delhi, India.
[36] Bureau of Indian Standards (BIS). (1988b). IS 4031-5: Methods of physical tests for hydraulic cement, Part5: Determination of initial and final setting times. Bureau of Indian Standards, New Delhi, India.
[37] ASTM C1754.. (2012b). Standard test method for density and void content of hardened pervious concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C1754.
[38] ASTM C617/C617M. (2015a). Standard practice for capping cylindrical concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0617-10.
[39] BIS- IS 516-1959. (1959). IS 516-1959: Methods of test for strength of concrete. Bureau of Indian Standards, New Delhi, India.
[40] ASTM C1747/C1747M-13: Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. West Conshohocken, PA: ASTM International. doi:10.1520/C1747_C1747M-13
[41] ASTM C267. (2012a). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacing and polymer concretes. ASTM International, Pennsylvania, United States. doi:10.1520/C0267-20
[42] Nandi, S., & Ransinchung, G. D. R. N. (2022). Laboratory investigation of Portland cement concrete paver blocks made with Reclaimed Asphalt Pavement aggregates. Road Materials and Pavement Design, 23(3), 546–564. doi:10.1080/14680629.2020.1830153.
[43] Sahdeo, S. K., Ransinchung, G., Rahul, K. L., & Debbarma, S. (2021). Reclaimed Asphalt Pavement as a Substitution to Natural Coarse Aggregate for the Production of Sustainable Pervious Concrete Pavement Mixes. Journal of Materials in Civil Engineering, 33(2), 4020469. doi:10.1061/(asce)mt.1943-5533.0003555.
[44] Bittencourt, S. V., da Silva Magalhí£es, M., & da Nóbrega Tavares, M. E. (2021). Mechanical behavior and water infiltration of pervious concrete incorporating recycled asphalt pavement aggregate. Case Studies in Construction Materials, 14, 473. doi:10.1016/j.cscm.2020.e00473.
[45] Yang, J., & Jiang, G. (2003). Experimental study on properties of pervious concrete pavement materials. Cement and Concrete Research, 33(3), 381–386. doi:10.1016/S0008-8846(02)00966-3.
[46] Debbarma, S., Ransinchung, G. D., & Singh, S. (2019). Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement. Construction and Building Materials, 199, 508–525. doi:10.1016/j.conbuildmat.2018.12.047.
[47] Abou Sleiman, C. N., Shi, X., & Zollinger, D. G. (2019). An Approach to Characterize the Wearability of Concrete Pavement Surface Treatments. Transportation Research Record, 2673(1), 230–239. doi:10.1177/0361198118821668.
[48] Shi, X., Mirsayar, M. M., Mukhopadhyay, A., & Zollinger, D. (2019). Characterization of two-parameter fracture properties of portland cement concrete containing reclaimed asphalt pavement aggregates by semicircular bending specimens. Cement and Concrete Composites, 95(January), 56–69. doi:10.1016/j.cemconcomp.2018.10.013.
[49] Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275–1296. doi:10.1016/j.cemconres.2004.04.004.
[50] Saboo, N., Nirmal Prasad, A., Sukhija, M., Chaudhary, M., & Chandrappa, A. K. (2020). Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB). Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120581.
[51] Diwate, S., Chandrappa, A. K., & Pasla, D. (2024). Comparative assessment of recycled concrete and recycled asphalt aggregate in pervious concrete: emphasis on strength and life cycle assessment. International Journal of Pavement Engineering, 25(1), 2378339. doi:10.1080/10298436.2024.2378339.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
