Flexural Behavior of Hybrid Fiber Reinforced SCC Beams with Longitudinal and Bubble Voids
Downloads
Doi: 10.28991/CEJ-2025-011-04-08
Full Text: PDF
[2] Mansur, M. A. (1999). Design of reinforced concrete beams with small openings under combined loading. ACI Structural Journal, 96(5), 675–682. doi:10.14359/720.
[3] Nasvik, J. (2011). On the bubble: Placing concrete around plastic voids increases efficiency and reduces costs. Concrete Construction - World of Concrete, 56(12), 20–22.
[4] Churakov, A. (2014). Biaxial hollow slab with innovative types of voids. Construction of Unique Buildings and Structures, (6), 70. (In Russian).
[5] Mahdi, A. S., & Mohammed, S. D. (2021). Experimental and Numerical Analysis of Bubbles Distribution Influence in BubbleDeck Slab under Harmonic Load Effect. Engineering, Technology & Applied Science Research, 11(1), 6645–6649. doi:10.48084/etasr.3963.
[6] Idris, N. A., Noh, H. M., Azwani Mohamad, N. L. I., & Bangau, R. (2020). Reinforced Concrete by Using the Rectangular Shape of Voided Beam. Journal of Mechanical Engineering, 9.
[7] Abbass, A. A., Abid, S. R., Arna'ot, F. H., Al-Ameri, R. A., & Özakça, M. (2020). Flexural response of hollow high strength concrete beams considering different size reductions. Structures, 23, 69–86. doi:10.1016/j.istruc.2019.10.001.
[8] Alnuaimi, A. S., Al-Jabri, K. S., & Hago, A. (2008). Comparison between solid and hollow reinforced concrete beams. Materials and Structures/Materiaux et Constructions, 41(2), 269–286. doi:10.1617/s11527-007-9237-x.
[9] Dinesh Kanna, M., & Arun, M. (2021). Effects of Longitudinal and Transverse Direction Opening in Reinforced Concrete Beam: The State of Review. IOP Conference Series: Materials Science and Engineering, 1059(1), 12049. doi:10.1088/1757-899X/1059/1/012049.
[10] Murugesan, A., & Narayanan, A. (2017). Influence of a Longitudinal Circular Hole on Flexural Strength of Reinforced Concrete Beams. Practice Periodical on Structural Design and Construction, 22(2), 04016021. doi:10.1061/(asce)sc.1943-5576.0000307.
[11] Ismael, M. A., & Hameed, Y. M. (2022). Structural behavior of hollow-core reinforced self-compacting concrete beams. SN Applied Sciences, 4(5), 150. doi:10.1007/s42452-022-05036-6.
[12] Al-Smadi, Y. M., Al-Huthaifi, N., & Alkhawaldeh, A. A. (2022). The effect of longitudinal hole shape and size on the flexural behavior of RC beams. Results in Engineering, 16, 100607. doi:10.1016/j.rineng.2022.100607.
[13] Sivaneshan, P., & Harishankar, S. (2017). Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls. IOP Conference Series: Earth and Environmental Science, 80(1), 12031. doi:10.1088/1755-1315/80/1/012031.
[14] Ajeel, A. E., Qaseem, T. A., & Rasheed, S. R. (2018). Structural behavior of voided reinforced concrete beams under combined moments. Civil and Environmental Research, 10(1), 17-24.
[15] Hekal, G. M., Fadel, A. K., Shaheen, Y. B., & Fayed, S. (2025). Flexure strength of multi-hollow core RC beams reinforced with advanced materials. Structures, 71, 108051. doi:10.1016/j.istruc.2024.108051.
[16] Olivito, R. S., & Zuccarello, F. A. (2010). An experimental study on the tensile strength of steel fiber reinforced concrete. Composites Part B: Engineering, 41(3), 246–255. doi:10.1016/j.compositesb.2009.12.003.
[17] Soutsos, M. N., Le, T. T., & Lampropoulos, A. P. (2012). Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, 36, 704–710. doi:10.1016/j.conbuildmat.2012.06.042.
[18] Chi, Y., Xu, L., & Zhang, Y. (2014). Experimental Study on Hybrid Fiber–Reinforced Concrete Subjected to Uniaxial Compression. Journal of Materials in Civil Engineering, 26(2), 211–218. doi:10.1061/(asce)mt.1943-5533.0000764.
[19] Adnan Hadi, M., & Mohammed, S. D. (2021). Improving torsional - Flexural resistance of concrete beams reinforced by hooked and straight steel fibers. Materials Today: Proceedings, 42, 3072–3082. doi:10.1016/j.matpr.2020.12.1046.
[20] Ismael, T. M., & Mohammed, S. D. (2021). Enhancing the mechanical properties of lightweight concrete using mono and hybrid fibers. IOP Conference Series: Materials Science and Engineering, 1105(1), 012084. doi:10.1088/1757-899x/1105/1/012084.
[21] Grünewald, S., & Walraven, J. C. (2001). Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete. Cement and Concrete Research, 31(12), 1793–1798. doi:10.1016/S0008-8846(01)00555-5.
[22] Ayeni, I. S., Yatim, J. M., Shukor Lim, N. H. A., & Alukoa, O. G. (2024). A Review of Hybridised Use of Fibres in Shear Behaviour of Fibre-Reinforced Concrete Beams. ASEAN Engineering Journal, 14(1), 145–156. doi:10.11113/aej.V14.20314.
[23] Wu, F., Zhao, B., Cao, J., Shen, X., Wang, Z., Lei, H., & Cui, Z. (2024). Experimental and theoretical investigations on flexural performance of hybrid fiber reinforced ECC-NC composite beams. Case Studies in Construction Materials, 20, 3178. doi:10.1016/j.cscm.2024.e03178.
[24] Yoo, D. Y., Soleimani-Dashtaki, S., Oh, T., Chun, B., Banthia, N., Lee, S. J., & Yoon, Y. S. (2024). Strain-hardening effect on the flexural behavior of ultra-high-performance fiber-reinforced concrete beams with steel rebars. Developments in the Built Environment, 17, 100343. doi:10.1016/j.dibe.2024.100343.
[25] Sasikumar, P., & Candassamy, K. (2024). Strengthening of flexural behavior of reinforced concrete beams by using hybrid fibers: experimental and analytical study. Revista de La Construccion, 23(2), 354–373. doi:10.7764/RDLC.23.2.354.
[26] Alshahrani, A., Kulasegaram, S., & Kundu, A. (2025). Utilisation of simulation-driven fibre orientation for effective modelling of flexural strength and toughness in self-compacting concrete. Construction and Building Materials, 459, 139767. doi:10.1016/j.conbuildmat.2024.139767.
[27] Altun, F., Haktanir, T., & Ari, K. (2006). Experimental investigation of steel fiber reinforced concrete box beams under bending. Materials and Structures/Materiaux et Constructions, 39(4), 491–499. doi:10.1617/s11527-006-9095-y.
[28] Jacob, B. M., & Bincy, S. (2018). Parametric Study of Longitudinal Hollow Steel Fibre Reinforced Concrete (SFRC) Beams. IOP Conference Series: Materials Science and Engineering, 396(1), 12011. doi:10.1088/1757-899X/396/1/012011.
[29] EFCA. (2005). The European Guidelines for Self-Compacting Concrete: Specification, Production and Use. The European Guidelines for Self-Compacting Concrete (Issue May). European Project Group. European Federation of Concrete Admixtures Associations (EFCA), Berlin, Germany.
[30] ASTM C33/C33M-18. (2003). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[31] ASTM C39/C39M-18. (2020). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-18.
[32] BS 1881-116. (1983) Testing Concrete. Method for Determination of Compressive Strength of Concrete Cubes. British standard Institute (BSI), London, United Kingdom.
[33] ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
[34] ASTM C469/C469M-14. (2021). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-14.
[35] ACI 318-19. (2019). American Concrete Institute, Building Code Requirements for Structural Concrete. American Concrete Institute (ACI), Farmington Hills, United States.
[36] Park, R. (1988, August). Ductility evaluation from laboratory and analytical testing. Proceedings of the 9th world conference on earthquake engineering, 2-9 August, Tokyo-Kyoto Japan.
[37] Banthia, N., & Nandakumar, N. (2003). Crack growth resistance of hybrid fiber reinforced cement composites. Cement and Concrete Composites, 25(1), 3–9. doi:10.1016/S0958-9465(01)00043-9.
[38] Shao, Y. (2020). Improving ductility and design methods of reinforced high-performance fiber-reinforced cementitious composite (HPFRCC) flexural members. Ph.D. Thesis, Stanford University, Stanford, United States.
[39] Dancygier, A. N., & Savir, Z. (2006). Flexural behavior of HSFRC with low reinforcement ratios. Engineering Structures, 28(11), 1503–1512. doi:10.1016/j.engstruct.2006.02.005.
[40] Ning, X., Ding, Y., Zhang, F., & Zhang, Y. (2015). Experimental study and prediction model for flexural behavior of reinforced SCC beam containing steel fibers. Construction and Building Materials, 93, 644–653. doi:10.1016/j.conbuildmat.2015.06.024.
[41] Chao, S. H., Naaman, A. E., & Parra-Montesinos, G. J. (2006). Bond behavior of strand embedded in fiber reinforced cementitious composites. PCI Journal, 51(6), 56–71. doi:10.15554/pcij.11012006.56.71.
[42] Yoo, D. Y., & Yoon, Y. S. (2015). Structural performance of ultra-high-performance concrete beams with different steel fibers. Engineering Structures, 102, 409–423. doi:10.1016/j.engstruct.2015.08.029.
[43] Taerwe, L. (2020). Structural ductility of concrete beams prestressed with FRP tendons. In Non-Metallic (FRP) Reinforcement for Concrete Structures. Non-Metallic (FRP) Reinforcement for Concrete Structures. doi:10.1201/9781482271621-56.
[44] Li, Z., Zhu, H., Zhen, X., Wen, C., & Chen, G. (2021). Effects of steel fiber on the flexural behavior and ductility of concrete beams reinforced with BFRP rebars under repeated loading. Composite Structures, 270, 114072. doi:10.1016/j.compstruct.2021.114072.
[45] Wang, H., & Belarbi, A. (2011). Ductility characteristics of fiber-reinforced-concrete beams reinforced with FRP rebars. Construction and Building Materials, 25(5), 2391–2401. doi:10.1016/j.conbuildmat.2010.11.040.
[46] Natarajan, E. (2018). Ductility Response of Hybrid Fibre Reinforced Concrete Beams. Journal of Urban and Environmental Engineering, 174–179. doi:10.4090/juee.2017.v11n2.174-179.
[47] Kim, T. K., & Park, J. S. (2021). Evaluation of the performance and ductility index of concrete structures using advanced composite material strengthening methods. Polymers, 13(23), 4239. doi:10.3390/polym13234239.
[48] You, Z., Chen, X., & Dong, S. (2011). Ductility and strength of hybrid fiber reinforced self-consolidating concrete beam with low reinforcement ratios. Systems Engineering Procedia, 1, 28–34. doi:10.1016/j.sepro.2011.08.006.
[49] Espion, B. (1994). Discussion of "Flexural Analysis of Reinforced Concrete Beams Containing Steel Fibers” by Byung Hwan Oh (October, 1992, Vol. 118, No. 10). Journal of Structural Engineering, 120(6), 1932–1934. doi:10.1061/(asce)0733-9445(1994)120:6(1932).
[50] Ashour, S. A. (2000). Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams. Engineering Structures, 22(5), 413–423. doi:10.1016/S0141-0296(98)00135-7.
[51] Aslani, F., & Samali, B. (2014). Flexural toughness characteristics of self-compacting concrete incorporating steel and polypropylene fibres. Australian Journal of Structural Engineering, 15(3), 269–286. doi:10.7158/S13-011.2014.15.3.
[52] ACI 544.4R-88 Report. (1999). Design Considerations for Steel Fiber Reinforced Concrete. ACI Structural Journal, 85(5), 544.4R-1-544.4R-17. doi:10.14359/3144.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
