Numerical Analysis of Load-Bearing Capacity in Contaminated and Uncontaminated Soils Treated with Nanomaterials
Downloads
Construction of load-bearing structures requires both a strong foundation and stable soil. For projects located on weak or contaminated soils, stabilization techniques are a prerequisite. Nanotechnology holds promise for improving soil strength and stability, offering innovative solutions for enhancing site conditions in geotechnical engineering. This numerical study explores the potential application of nano-clay (NC) and nano-silica (NS) in improving the overall load-bearing performance of a strip footing resting on clean and kerosene-contaminated soils. The objectives are to assess the impact of varying nanoparticle contents and curing durations on soil performance. Results suggested that adding NC and NS substantially enhances the bearing capacity ratio (BCR) up to a maximum of 4.76 and 4.33 at 1% NC and 1.5% NS, respectively, compared to untreated soil. Overdosing, however, resulted in reduced effectiveness, emphasizing the significance of optimal contents. Conversely, the BCR improvement was less noticeable in kerosene-contaminated soils until it peaked at 2.5% NS and 2% NC. However, results of both clean and contaminated soils revealed that nanomaterials negatively impact settlement behavior. Curing age was found to be a major factor affecting BCR, in which treated soils showed a consistent increase in BCR over time. These findings endorse the potential of nanomaterials for stabilizing soil used in geotechnical engineering. Careful selection of dosages and consideration of soil contamination are critical to optimizing performance in complex geotechnical conditions.
Downloads
[1] Majeed, Z. H., & Raihan Taha, M. (2013). A Review of Stabilization of Soils by using Nanomaterials. Australian Journal of Basic and Applied Sciences, 7(2), 576–581.
[2] Huang, Y., & Wang, L. (2016). Experimental studies on nanomaterials for soil improvement: a review. Environmental Earth Sciences, 75(6), 1–10. doi:10.1007/s12665-015-5118-8.
[3] Zhang, Y., Zhou, C., Song, J., Li, J., & Gong, Y. (2024). Foundry waste reutilization: Anti-shrinkage geopolymer based on nano-clay and coal gangue. Construction and Building Materials, 434, 136710. doi:10.1016/j.conbuildmat.2024.136710.
[4] Bhagatkar, P. M., & Lamba, A. (2024). An Empirical Review of Innovative Soil Improvement Techniques in Geotechnical Engineering. Mesopotamian Journal of Civil Engineering, 2024, 42–53. doi:10.58496/mjce/2024/007.
[5] Al-Khyat, S., Naji, D. M., Hamad, H. T., & Onyeaka, H. (2023). a Review on Soil Contamination Sources: Impact on Engineering Properties and Remediation Techniques. Journal of Engineering and Sustainable Development, 27(3), 292–307. doi:10.31272/jeasd.27.3.1.
[6] Boushehrian, A. H. (2021). Contamination Effects on the Bearing Capacity of Circular Shallow Foundation Rested on Sand. Journal of Geotechnical Geology, 17, 471-478.
[7] Contessi, S., Calgaro, L., Dalconi, M. C., Bonetto, A., Bellotto, M. Pietro, Ferrari, G., Marcomini, A., & Artioli, G. (2020). Stabilization of lead contaminated soil with traditional and alternative binders. Journal of Hazardous Materials, 382, 120990. doi:10.1016/j.jhazmat.2019.120990.
[8] Kalhor, A., Ghazavi, M., & Roustaei, M. (2022). Impacts of Nano-silica on Physical Properties and Shear Strength of Clayey Soil. Arabian Journal for Science and Engineering, 47(4), 5271–5279. doi:10.1007/s13369-021-06453-2.
[9] Al Khazaleh, M., Karumanchi, M., Bellum, R. R., & Subramani, A. K. (2024). Experimental Assessment of Geotechnical Properties of Nano-Clay-Stabilized Soils: Advanced Sustainable Geotechnical Solution. International Journal of Geosynthetics and Ground Engineering, 10(1), 8. doi:10.1007/s40891-023-00517-z.
[10] Iranpour, B., & haddad, A. (2016). The influence of nanomaterials on collapsible soil treatment. Engineering Geology, 205, 40–53. doi:10.1016/j.enggeo.2016.02.015.
[11] Munda, J., & Mohanty, S. (2023). State-Of-The-Art Review on Improvement of Strength Characteristics of Soil Using Nano Silica. Ground Improvement Techniques, IGC 2021, Lecture Notes in Civil Engineering, 297, Springer, Singapore. doi:10.1007/978-981-19-6727-6_4.
[12] Alshawmar, F. (2024). Utilization of Nano Silica and Plantain Leaf Ash for Improving Strength Properties of Expansive Soil. Sustainability (Switzerland), 16(5), 2157. doi:10.3390/su16052157.
[13] Selvakumar, S., Kulanthaivel, P., & Soundara, B. (2021). Influence of nano-silica and sodium silicate on the strength characteristics of clay soil. Nanotechnology for Environmental Engineering, 6(3), 46. doi:10.1007/s41204-021-00142-z.
[14] Kannan, G., & Sujatha, E. R. (2022). Geotechnical behaviour of nano-silica stabilized organic soil. Geomechanics and Engineering, 28(3), 239–253. doi:10.12989/gae.2022.28.3.239.
[15] Arora, A., Singh, B., & Kaur, P. (2019). Performance of Nano-particles in stabilization of soil: A comprehensive review. Materials Today: Proceedings, 17, 124–130. doi:10.1016/j.matpr.2019.06.409.
[16] Ghasabkolaei, N., Janalizadeh, A., Jahanshahi, M., Roshan, N., & Ghasemi, S. E. (2016). Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles: An experimental study. European Physical Journal Plus, 131(5), 134. doi:10.1140/epjp/i2016-16134-3.
[17] Barbhuiya, G. H., & Hasan, S. D. (2021). Effect of nano-silica on physio-mechanical properties and microstructure of soil: A comprehensive review. Materials Today: Proceedings, 44, 217–221. doi:10.1016/j.matpr.2020.09.115.
[18] Samani, M., Ahlawat, Y. K., Golchin, A., Alikhani, H. A., Fathi-Gerdelidani, A., Ahlawat, U., Malik, A., Panwar, R., Maan, D. S., Ahmed, M., Thakur, P., & Mishra, S. (2024). Nano silica-mediated stabilization of heavy metals in contaminated soils. Scientific Reports, 14(1), 20496. doi:10.1038/s41598-024-69182-0.
[19] Lo, A.-Y., Wang, C., Hung, W. H., Zheng, A., & Sen, B. (2015). Nano- and Biomaterials for Sustainable Development. Journal of Nanomaterials, 2015(1). doi:10.1155/2015/129894.
[20] Mir, B. A., & Hariprasad Reddy, S. (2021). Enhancement in Shear Strength Characteristics of Soft Soil by Using Nanomaterials. Sustainable Environment and Infrastructure. Lecture Notes in Civil Engineering, 90, Springer, Cham, Switzerland. doi:10.1007/978-3-030-51354-2_39.
[21] Khalid, N., Mukri, M., Kamarudin, F., Abdul Ghani, A. H., Arshad, M. F., Sidek, N., Ahmad Jalani, A. Z., & Bilong, B. (2015). Effect of Nanoclay in Soft Soil Stabilization. InCIEC 2014, Springer, Singapore. doi:10.1007/978-981-287-290-6_79.
[22] H.Sadighi, & M.A. Rowshanzamir. (2020). Nanoclay Stabilization of Crude Oil Contaminated Soils. AUT Journal of Civil Engineering, 4(2), 175–184.
[23] Chaudhary, V., Yadav, J. S., & Dutta, R. K. (2024). The Impact of Nano-Silica and Nano-Silica-Based Compounds on Strength, Mineralogy and Morphology of Soil: A Review. Indian Geotechnical Journal, 54(3), 876–896. doi:10.1007/s40098-024-00871-3.
[24] Al-Sanad, H. A., & Ismael, N. F. (1997). Aging Effects on Oil-Contaminated Kuwaiti Sand. Journal of Geotechnical and Geoenvironmental Engineering, 123(3), 290–293. doi:10.1061/(asce)1090-0241(1997)123:3(290).
[25] Ali Zomorodian, S. M., Shabnam, M., Armina, S., & O’Kelly, B. C. (2017). Strength enhancement of clean and kerosene-contaminated sandy lean clay using nanoclay and nanosilica as additives. Applied Clay Science, 140, 140–147. doi:10.1016/j.clay.2017.02.004.
[26] Smith, I. M., Griffiths, D. V., & Margetts, L. (2015). Programming the Finite Element Method. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119189237.
[27] Vesic, A. S. (1975). Bearing capacity of shallow foundations. Foundation engineering handbook, Reinhold Company, Inc., New York, United States.
[28] Mohammadi, M., & Niazian, M. (2013). Investigation of Nano-clay effect on geotechnical properties of Rasht clay. International Journal of Advanced Scientific and Technical Research, 3(3), 37–46.
[29] Consoli, N. C., Foppa, D., Festugato, L., & Heineck, K. S. (2007). Key Parameters for Strength Control of Artificially Cemented Soils. Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 197-205. doi:10.1061/(asce)1090-0241(2007)133:2(197).
[30] Choobbasti, A. J., & Kutanaei, S. S. (2017). Microstructure characteristics of cement-stabilized sandy soil using nanosilica. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 981–988. doi:10.1016/j.jrmge.2017.03.015.
[31] Gu, J., Cai, X., Wang, Y., Guo, D., & Zeng, W. (2022). Evaluating the Effect of Nano-SiO2 on Different Types of Soils: A Multi-Scale Study. International Journal of Environmental Research and Public Health, 19(24), 16805. doi:10.3390/ijerph192416805.
[32] Goyal, R., Verma, V. K., & Singh, N. B. (2024). Hydration behavior of Portland pozzolana cement in the presence of nano-silica. Innovative Infrastructure Solutions, 9(7), 271. doi:10.1007/s41062-024-01572-9.
[33] Saeed, K., Al-Khyat, S., Hacheem, Z. A., & Fartosy, S. H. (2024). Evaluating the Efficiency of Alkaline Activator with Silica-Rich Wastes in Stabilizing Cadmium-Contaminated Soil. Civil Engineering Journal (Iran), 10(7), 2123–2143. doi:10.28991/CEJ-2024-010-07-04.
[34] Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial role of nanosilica in cement based materials - A review. Construction and Building Materials, 47, 1069–1077. doi:10.1016/j.conbuildmat.2013.05.052.
[35] Adnan, E., Al Waily, M. J., & Jawad, Z. F. (2023). A Review Study on the Effect of Nanomaterials and Local Materials on Soil Geotechnical Properties. E3S Web of Conferences, 427, 1010. doi:10.1051/e3sconf/202342701010.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














