Shear Behavior of Random Rockfill in Dam Construction via Large-Scale In-Situ Testing
Downloads
Dam construction commonly demands a massive amount of random material. This material offers practical material collection, minimum environmental impact, and economical cost. Unfortunately, shear strength assessment of random material is difficult because of large particle presence. Regular laboratory tests cannot accommodate these large particles. Misevaluation of random material shear strength may induce disastrous collapse. A large-scale direct shear apparatus, with a 70 cm by 70 cm shear plane, was developed and proposed for testing random fill material in-situ. This manuscript presents an experimental study using this device in Rukoh Dam construction, Indonesia. Test results captured variations between normal stress and shear stress to determine shear strength parameter models. Volume changes during shearing were also observed. Random materials in Rukoh Dam could be categorized as random rock. This study was also compared to other relevant rockfill studies. The proposed method offers an impressive approach for assessing and verifying the shear strength of compacted random material as well as compaction quality on site. It can be used to decide if the ongoing design and compaction method have to be modified or continued. Since the proposed direct shear test is reliable, fast, simple, and inexpensive, it is strongly recommended for dam construction.
Downloads
[1] Sánchez-Martín, J., Galindo, R., Arévalo, C., Menéndez-Pidal, I., Kazanskaya, L., & Smirnova, O. (2020). Optimized Design of Earth Dams: Analysis of Zoning and Heterogeneous Material in Its Core. Sustainability (Switzerland), 12(16), 6667. doi:10.3390/su12166667.
[2] Sahadewa, A., Setyawan, H., Tanjung, M., Pamumpuni, A., Hakim, A. M., Langit, J., Herry, P., & Wibowo, A. (2022). Construction Failure of X Dam: The Importance of Field Monitoring. 11th International Symposium of Field Monitoring in Geomechanics, 4-8 September, 2022, London, United Kingdom.
[3] Liu, S. H. (1999). Development of a New Direct Shear Test and Its Application to the Problems of Slope Stability and Bearing Capacity. PhD Thesis, Nagoya Institute of Technology, Nagoya, Japan.
[4] Matsuoka, H., Liu, S., Sun, D., & Nishikata, U. (2001). Development of a New In-Situ Direct Shear Test. Geotechnical Testing Journal, 24(1), 92–102. doi:10.1520/gtj11285j.
[5] Wang, J. J., Zhang, H. P., Wen, H. B., & Liang, Y. (2015). Shear Strength of an Accumulation Soil from Direct Shear Test. Marine Georesources and Geotechnology, 33(2), 183–190. doi:10.1080/1064119X.2013.828821.
[6] Sagnak, M., Işik, N. S., Cüceoğlu, F., Aydin, S., & Koçbay, A. (2024). Investigation of In-Situ Shear Strength Parameters in Gölecik Dam Foundation, Bursa, Türkiye. ENGGEO'2024, National Symposium on Engineering Geology and Geotechnics, 6-8 June, 2024, Nevşehir, Turkey.
[7] Zhang, X., Ji, S., Feng, Y., Li, Y., & Zhao, C. (2025). A Comparison on the Effects of Coal Fines and Sand Fouling on the Shear Behaviors of Railway Ballast Using Large Scale Direct Shear Tests. Journal of Traffic and Transportation Engineering (English Edition), 12(1), 52–67. doi:10.1016/j.jtte.2022.09.003.
[8] Wang, J.-Q., Zhang, T.-Y., Dong, C.-F., & Tang, Y. (2025). Quantifying Railway Ballast Degradation through Repeated Large-Scale Direct Shear Tests and Three-Dimensional Morphological Analysis. International Journal of Geomechanics, 25(4), 10252. doi:10.1061/ijgnai.gmeng-10252.
[9] Hassan, M. O., Jafari, N. H., Twilley, R. R., & Rovai, A. S. (2024). Large-Scale Laboratory Direct Shear Testing for Wetland Root Strength. Geo-Congress 2024, 370–376. doi:10.1061/9780784485330.038.
[10] Chao, Z., Fowmes, G., Mousa, A., Zhou, J., Zhao, Z., Zheng, J., & Shi, D. (2024). A New Large-Scale Shear Apparatus for Testing Geosynthetics-Soil Interfaces Incorporating Thermal Condition. Geotextiles and Geomembranes, 52(5), 999–1010. doi:10.1016/j.geotexmem.2024.06.002.
[11] Chen, J. F., Liu, Z. N., Gu, Z. A., Zhu, Y., & Gao, J. L. (2024). Large-Scale Direct Shear Test of the Interface Between Coral Sand and Geogrid. Applied Ocean Research, 153, 104219. doi:10.1016/j.apor.2024.104219.
[12] Sahadewa, A. (2023). Case History of Random Material Shear Strength Evaluation using In-situ Large Scale Direct Shear Test in the Construction of the Longest Dam in the Southeast Asian. IOP Conference Series: Earth and Environmental Science, 1249(1), 12011. doi:10.1088/1755-1315/1249/1/012011.
[13] Hakim, A. M., Kamaruddin, S. A., Sahadewa, A., Nazir, R., & Setyawan, H. E. (2023). Effect of Grain Size Distribution on Shear Strength Characteristic of Random Fill Material at Keureuto Dam, Indonesia. Key Engineering Materials, 970, 151–156. doi:10.4028/p-h30laq.
[14] Sahadewa, A. (2023). In Situ Large Scale Direct Shear Test for Evaluating Compaction Work of Random Material: Case of Construction Failure in an Indonesia Dam. Key Engineering Materials, 972, 125–132. doi:10.4028/p-28QzdB.
[15] Sahadewa, A. (2024). The Spatial Variability of Random Fill Shear Strength Based on In-Situ Large Scale Direct Shear Test in the Kuwil Kawangkoan Dam Construction. Proceedings of 6th International Conference on Civil Engineering and Architecture, Vol. 1. ICCEA 2023, Lecture Notes in Civil Engineering, 530, Springer, Singapore. doi:10.1007/978-981-97-5311-6_14.
[16] United States Bureau of Reclamation (USBR). (2012). Design Standards No. 13: Embankment Dams (Chapter 2: Embankment Design Phase 4 [Final]. United States Department of the Interior, Bureau of Reclamation, Denver, United States.
[17] United States Society on Dams (USSD). (2011). Materials for Embankment Dams. United States Society on Dams, Denver, United States.
[18] International Commission on Large Dams (ICOLD). (1989). Moraine as Embankment and Foundation Material - State of the Art, Bulletin 69. International Commission on Large Dams, Paris, France.
[19] Sherard, J. L., & Dunnigan, L. P. (1989). Critical Filters for Impervious Soils. Journal of Geotechnical Engineering, 115(7), 927–947. doi:10.1061/(ASCE)0733-9410(1989)115:7(927).
[20] Rönnqvist, H. (2010). Predicting Surfacing Internal Erosion in Moraine Core Dams. Ph.D. Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.
[21] Bernell, L. (1982). Experiences of Wet Compacted Dams in Sweden. 14th International Congress on Large Dams, 3-7 May, 1982, Rio de Janeiro, Brazil.
[22] Xu, Z., & Jiang, G. (2017). Technologies on Construction of Earth Core Rockfill Dams. Revista Brasileira de Engenharia de Barragens, 5, 42-54.
[23] Ferreira, B. S., Almeida, M. S. S., Lopes, F. R., Reis Cavalcanti, M. do C., & Pires Filho, C. J. (2022). On the Use of Random Material in Dam Cores: Case of the Manso Dam, Brazil. Geotechnical and Geological Engineering, 40(4), 1973–1987. doi:10.1007/s10706-021-02003-7.
[24] Ma, H., & Chi, F. (2016). Major Technologies for Safe Construction of High Earth-Rockfill Dams. Engineering, 2(4), 498–509. doi:10.1016/J.ENG.2016.04.001.
[25] Fu, Z., Chen, S., Ji, E., Li, G., & Lu, Y. (2020). Using Clay-Gravel Mixtures as the Impervious Core Materials in Rockfill Dams. Dam Engineering - Recent Advances in Design and Analysis, Chapter 1. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.93206.
[26] Kutzner, C. (1996). Earth and Rockfill Dams for Reservoirs. Ferdinand Enke Verlag, Stuttgart, Germany. (In German).
[27] Fell, R., MacGregor, P., Stapledon, D., & Bell, G. (2005). Geotechnical Engineering of Dams (1st Ed.). CRC Press, London, United Kingdom. doi:10.1201/NOE0415364409.
[28] Haselsteiner, R., Pamuk, R., & Ersoy, B. (2017). Aspects Concerning the Shear Strength of Rockfill Material in Rockfill Dam Engineering. Geotechnik, 40(3), 193–203. doi:10.1002/gete.201600099.
[29] Hoeg, K., Fell, R., & Bridle, R. (2012). BC Hydro WAC Bennett Dam: Expert Engineering Panel Report No. N3405, Volumes 1 and 2, BC Hydro, Vancouver, Canada.
[30] Rönnqvist, H., & Viklander, P. (2015). Applying Empirical Methods to Assess the Internal Stability of Embankment Dam Cores of Glacial Till. Geomaterials, 5(1), 1–18. doi:10.4236/gm.2015.51001.
[31] Boudia, A., Berga, A., Boudia, S., & Hussain, S. K. (2021). The Detailed Study on the Development of the Triaxial Equipment in the Soil Mechanics: A Review. International Journal of Multidisciplinary Research and Growth Evaluation, 2(6), 67–76. doi:10.54660/anfo.
[32] Skempton, A. W. (1949). Alexandre Collin a Note on His Pioneer Work in Soil Mechanics. Geotechnique, 1(4), 215–222. doi:10.1680/geot.1949.1.4.215.
[33] Skempton, A. W. (1958). Arthur Langtry Bell (1874-1956) and His Contribution to Soil Mechanics. Geotechnique, 8(4), 143–157. doi:10.1680/geot.1958.8.4.143.
[34] Matthews, M. C. (1988). Engineering Application of Direct and Simple Shear Testing. Ground Engineering, 21(2), 13–21.
[35] Bowles, J. (1992). Engineering Properties of Soil and Their Measurements. 4th Edition, McGraw-Hill, Boston, United States.
[36] Davies, M. C. R., & Le Masurier, J. W. (1997). Soil/Nail Interaction Mechanisms from Large Direct Shear Tests. Ground Improvement Geosystems Densification and Reinforcement: Proceedings of the Third International Conference on Ground Improvement Geosystems, 3-5 June, 1997, London, United Kingdom.
[37] Andjelkovic, V., Pavlovic, N., Lazarevic, Z., & Radovanovic, S. (2018). Modelling of Shear Strength of Rockfills Used for the Construction of Rockfill Dams. Soils and Foundations, 58(4), 881–893. doi:10.1016/j.sandf.2018.04.002.
[38] Tanghetti, G., Goodey, R. J., Divall, S., McNamara, A. M., & McKinley, B. (2019). Design and Development of a Large Shear Box for Testing Working Platform Material. XVII European Conference on Soil Mechanics and Geotechnical Engineering, 1-6 September, 2019, Reykjavik, Iceland.
[39] Srivastava, L. P., Singh, M., & Singh, J. (2019). Development of Large Direct Shear Test Apparatus for Passive Bolt Reinforced Mass. Indian Geotechnical Journal, 49(1), 124–131. doi:10.1007/s40098-018-0306-6.
[40] Muñiz-Menéndez, M., & Estaire, J. (2022). Experimental Study on the Shear Strength of Medium-Coarse Rockfill. Proceedings from the 20th International Conference on Soil Mechanics and Geotechnical Engineering, 1-5 May, 2022, Sydney, Australia.
[41] Attom, M. F. (1997). The Effect of Compactive Energy Level on Some Soil Properties. Applied Clay Science, 12(1–2), 61–72. doi:10.1016/S0169-1317(96)00037-3.
[42] Yamin, M., Attom, M. F., Atabay, S., & Vandanapu, R. (2021). The Effect of Compaction Effort on Shear Strength Parameters of Low/High Plasticity Clay Soils. Geotechnical Engineering, 52(2), 1–8. doi:10.14456/seagj.2021.32.
[43] Marsland, A. (1971). The Use of In-Situ Tests in a Study of the Effects of Fissures on the Properties of Stiff Clays. Proceedings of the First Australian–NZ Conference on Geomechanics, 9-13 August, 1971, Melbourne, Australia.
[44] O’Loughlin, C. L., & Pearce, A. J. (1976). Influence of Cenozoic Geology on Mass Movement and Sediment Yield Response to Forest Removal, North Westland, New Zealand. Bulletin of the International Association of Engineering Geology, 13(1), 41–46. doi:10.1007/BF02634757.
[45] Endo, T. (1980). Effects of Tree Roots upon Shear Strength of Soil. Japan Agricultural Research Quarterly, 14(2), 112–115.
[46] Brand, E. W. (1985). Predicting the Performance of Residual Soil Slopes. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 5, 2541-2578, A.A. Balkema, Rotterdam, the Netherlands.
[47] Fakhimi, A., Salehi, D., & Mojtabai, N. (2004). Numerical Back Analysis for Estimation of Soil Parameters in the Resalat Tunnel Project. Tunnelling and Underground Space Technology, 19(1), 57–67. doi:10.1016/S0886-7798(03)00087-7.
[48] Fakhimi, A., Boakye, K., Sperling, D. J., & McLemore, V. T. (2008). Development of a Modified In Situ Direct Shear Test Technique to Determine Shear Strength Parameters of Mine Rock Piles. Geotechnical Testing Journal, 31(3), 269–273. doi:10.1520/gtj101152.
[49] Oyanguren, P. R., Nicieza, C. G., Fernández, M. I. Á., & Palacio, C. G. (2008). Stability Analysis of Llerin Rockfill Dam: An In Situ Direct Shear Test. Engineering Geology, 100(3–4), 120–130. doi:10.1016/j.enggeo.2008.02.009.
[50] Zou, Z., Zhang, Q., Xiong, C., Tang, H., Fan, L., Xie, F., Yan, J., & Luo, Y. (2020). In Situ Shear Test for Revealing the Mechanical Properties of the Gravelly Slip Zone Soil. Sensors (Switzerland), 20(22), 1–16. doi:10.3390/s20226531.
[51] Das, B. M. (2009). Principles of Geotechnical Engineering (7th Ed.). CL Engineering, Boston, United States.
[52] Coulomb, C. A. (1776). Essay on an Application of the Rules of Maximis and Minimis to Some Problems of Statics, Relating to Architecture. Memoires de Mathematique de l’Academie Royale de Science, 7, 343–387. (In French).
[53] Mohr, O. (1900). What Conditions Determine the Elastic Limit and Fracture of a Material?. Zeitschrift des Vereins Deutscher Ingenieure, 44(45), 1524-1530. (In German).
[54] Okamoto, T. (2004). Evaluation of In-Situ Strength of Rockfill Material Taking into Account of In-Situ Density and Strength by Laboratory Test. Proceedings of the 4th International Conference on Dam Engineering - New Developments in Dam Engineering, 18-20 October, 2004, Nanjing, China.
[55] Coduto, D. P. (2014). Foundation Design: Principles and Practices. Pearson Education Limited, London, United Kingdom.
[56] Leps, T. M. (1970). Review of Shearing Strength of Rockfill. Journal of the Soil Mechanics and Foundations Division, 96(4), 1159–1170. doi:10.1061/jsfeaq.0001433.
[57] Mitchell, J. K. (1993). Fundamentals of Soil Behavior (2nd Ed.). John Wiley & Sons, Hoboken, United States.
[58] Marsal, R. J. (1973). Mechanical Properties of Rockfill. John Wiley & Sons, Hoboken, United States.
[59] De Mello, V. F. B. (1977). Reflections on Design Decisions of Practical Significance to Embankment Dams. Geotechnique, 27(3), 281–355. doi:10.1680/geot.1977.27.3.281.
[60] Indraratna, B. (1994). Implications of Non-Linear Strength Criteria in the Stability Assessment of Rockfill Dams. International Conference on Soil Mechanics and Foundation Engineering, 5-10 January, 1994, New Delhi, India.
[61] Estaire, J., & Olalla, C. (2006). Analysis of the Strength of Riprap using Direct Shear Tests in a 1 × 1 m2 Box. Ingeniería Civil, 144, 73-79. (In Spanish).
[62] Frossard, E., Hu, W., Dano, C., & Hicher, P. Y. (2012). Rockfill Shear Strength Evaluation: A Rational Method Based on Size Effects. Geotechnique, 62(5), 415–427. doi:10.1680/geot.10.P.079.
[63] Barton, N. (2013). Shear Strength Criteria for Rock, Rock Joints, Rockfill and Rock Masses: Problems and Some Solutions. Journal of Rock Mechanics and Geotechnical Engineering, 5(4), 249–261. doi:10.1016/j.jrmge.2013.05.008.
[64] Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., & Hicher, P. Y. (2014). The Effect of Size on the Strength of Coarse Rock Aggregates and Large Rockfill Samples Through Experimental Data. Acta Mechanica, 225(8), 2199–2216. doi:10.1007/s00707-014-1127-z.
[65] Duncan, J. M., & Chang, C.-Y. (1970). Nonlinear Analysis of Stress and Strain in Soils. Journal of the Soil Mechanics and Foundations Division, 96(5), 1629–1653. doi:10.1061/jsfeaq.0001458.
[66] Wang, J.-J., Zhang, H.-P., Tang, S.-C., & Liang, Y. (2013). Effects of Particle Size Distribution on Shear Strength of Accumulation Soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(11), 1994–1997. doi:10.1061/(asce)gt.1943-5606.0000931.
[67] The Japanese Society of Soil Mechanics and Foundation Engineering. (1982). Testing and Design Strength of Rockfill Materials. The Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo, Japan. (In Japanese).
[68] Liu, S.-H. (2009). Application of In Situ Direct Shear Device to Shear Strength Measurement of Rockfill Materials. Water Science and Engineering, 2(3), 48–57. doi:10.3882/j.issn.1674-2370.2009.03.005.
[69] Wang, J. J., Yang, Y., & Chai, H. J. (2016). Strength of a Roller Compacted Rockfill Sandstone from In-Situ Direct Shear Test. Soil Mechanics and Foundation Engineering, 53(1), 30–34. doi:10.1007/s11204-016-9360-1.
[70] ASTM D3080/D3080M-23. (2023). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080_D3080M-23.
[71] Nicks, J. E., Gebrenegus, T., & Adams, M. T. (2015). Strength Characterization of Open-Graded Aggregates for Structural Backfills, No. FHWA-HRT-15-034, Bureau of Transportation Statistics, U.S. Department of Transportation, Washington, United States.
[72] Lee, K. L., & Seed, H. B. (1967). Drained Strength Characteristics of Sands. Journal of the Soil Mechanics and Foundations Division, 93(6), 117–141. doi:10.1061/jsfeaq.0001048.
[73] Barton, N. (2008). Shear Strength of Rockfill, Interfaces and Rock Joints, and Their Points of Contact in Rock Dump Design. Proceedings of the First International Seminar on the Management of Rock Dumps, Stockpiles and Heap Leach Pads, 3-17. doi:10.36487/acg_repo/802_1.
[74] Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice. John Wiley & Sons, Hoboken, United States.
[75] Indraratna, B., Haque, A., & Aziz, N. (1999). Shear Behaviour of Idealized Infilled Joints Under Constant Normal Stiffness. Geotechnique, 49(3), 331–355. doi:10.1680/geot.1999.49.3.331.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.