Development of Novel Surrogate Models for Stress Concentration Factors in Composite Reinforced Tubular KT-Joints
Downloads
Doi: 10.28991/CEJ-2025-011-04-012
Full Text: PDF
[2] Yang, Y., Min, S., Peng, Y., Wang, H., & Chen, C. (2025). Experimental and numerical investigation on stress concentration factor of large-scale welded tubular T-joints. Ocean Engineering, 320, 120337. doi:10.1016/j.oceaneng.2025.120337.
[3] Zavvar, E., Rosa-Santos, P., Ghafoori, E., & Taveira-Pinto, F. (2025). Analysis of tubular joints in marine structures: A comprehensive review. Marine Structures, 99, 103702. doi:10.1016/j.marstruc.2024.103702.
[4] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Rasul, A. (2023). Rehabilitation Techniques for Offshore Tubular Joints. Journal of Marine Science and Engineering, 11(2), 461. doi:10.3390/jmse11020461.
[5] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Iqbal, M. (2024). A systematic review of stress concentration factors (SCFs) in composite reinforced circular hollow section (CHS) joints. Composites Part C: Open Access, 15, 100515. doi:10.1016/j.jcomc.2024.100515.
[6] ASME-PCC-2018. (2018). Repair of Pressure Equipment and Piping. The American Society of Mechanical Engineers, New York, United States.
[7] ISO 24817:2015. (2015). Petroleum, petrochemical and natural gas industries - Composite repairs for pipework - Qualification and design, installation, testing and inspection. International Organization for Standardization (ISO), Geneva, Switzerland.
[8] Zuo, G., Tong, L., Zhao, Z., Wang, H., Shi, W., & Yan, Y. (2025). SCF formulae of corrugated-web steel girders: Experiments and numerical analysis. Journal of Constructional Steel Research, 228, 109445. doi:10.1016/j.jcsr.2025.109445.
[9] Sadat Hosseini, A., Bahaari, M. R., & Lesani, M. (2019). Parametric Study of FRP Strengthening on Stress Concentration Factors in an Offshore Tubular T-Joint Subjected to In-Plane and Out-of-Plane Bending Moments. International Journal of Steel Structures, 19(6), 1755–1766. doi:10.1007/s13296-019-00244-0.
[10] Sadat Hosseini, A., Bahaari, M. R., & Lesani, M. (2019). Stress concentration factors in FRP-strengthened offshore steel tubular T-joints under various brace loadings. Structures, 20, 779–793. doi:10.1016/j.istruc.2019.07.004.
[11] Tong, L., Xu, G., Zhao, X. L., Zhou, H., & Xu, F. (2019). Experimental and theoretical studies on reducing hot spot stress on CHS gap K-joints with CFRP strengthening. Engineering Structures, 201, 296–313. doi:10.1016/j.engstruct.2019.109827.
[12] Xu, G., Tong, L., Zhao, X. L., Zhou, H., & Xu, F. (2020). Numerical analysis and formulae for SCF reduction coefficients of CFRP-strengthened CHS gap K-joints. Engineering Structures, 210, 369–86. doi:10.1016/j.engstruct.2020.110369.
[13] Sadat Hosseini, A., Bahaari, M. R., & Lesani, M. (2020). Experimental and parametric studies of SCFs in FRP strengthened tubular T-joints under axially loaded brace. Engineering Structures, 213, 110548. doi:10.1016/j.engstruct.2020.110548.
[14] Nassiraei, H., & Rezadoost, P. (2020). Stress concentration factors in tubular T/Y-joints strengthened with FRP subjected to compressive load in offshore structures. International Journal of Fatigue, 140, 105719. doi:10.1016/j.ijfatigue.2020.105719.
[15] Hosseini, A. S., Bahaari, M. R., & Lesani, M. (2020). SCF distribution in FRP-strengthened tubular T-joints under brace axial loading. Scientia Iranica, 27(3 A), 1113–1129. doi:10.24200/SCI.2018.5471.1293.
[16] Nassiraei, H., & Rezadoost, P. (2021). Stress concentration factors in tubular T/Y-connections reinforced with FRP under in-plane bending load. Marine Structures, 76, 102871. doi:10.1016/j.marstruc.2020.102871.
[17] Nassiraei, H., & Rezadoost, P. (2021). Parametric study and formula for SCFs of FRP-strengthened CHS T/Y-joints under out-of-plane bending load. Ocean Engineering, 221, 108313. doi:10.1016/j.oceaneng.2020.108313.
[18] Sadat Hosseini, A., Zavvar, E., & Ahmadi, H. (2021). Stress concentration factors in FRP-strengthened steel tubular KT-joints. Applied Ocean Research, 108, 1187–221. doi:10.1016/j.apor.2021.102525.
[19] Nassiraei, H., & Rezadoost, P. (2021). SCFs in tubular X-joints retrofitted with FRP under out-of-plane bending moment. Marine Structures, 79, 103010. doi:10.1016/j.marstruc.2021.103010.
[20] Nassiraei, H., & Rezadoost, P. (2021). SCFs in tubular X-connections retrofitted with FRP under in-plane bending load. Composite Structures, 274, 114314. doi:10.1016/j.compstruct.2021.114314.
[21] Zavvar, E., Sadat Hosseini, A., & Lotfollahi-Yaghin, M. A. (2021). Stress concentration factors in steel tubular KT-connections with FRP-Wrapping under bending moments. Structures, 33, 4743–4765. doi:10.1016/j.istruc.2021.06.100.
[22] Nassiraei, H., & Rezadoost, P. (2022). Development of a probability distribution model for the SCFs in tubular X-connections retrofitted with FRP. Structures, 36, 233–247. doi:10.1016/j.istruc.2021.10.033.
[23] Xu, X., Shao, Y., Gao, X., & Mohamed, H. S. (2022). Stress concentration factor (SCF) of CHS gap TT-joints reinforced with CFRP. Ocean Engineering, 247, 110722. doi:10.1016/j.oceaneng.2022.110722.
[24] Mohamed, H. S., Zhang, L., Shao, Y. B., Yang, X. S., Shaheen, M. A., & Suleiman, M. F. (2022). Stress concentration factors of CFRP-reinforced tubular K-joints via Zero Point Structural Stress Approach. Marine Structures, 84, 103239. doi:10.1016/j.marstruc.2022.103239.
[25] Mohamed, H. S., Yang, X. S., Shao, Y. B., Shaheen, M. A., Suleiman, M. F., Zhang, L., & Hossian, A. (2022). Stress concentration factors (SCF) of CFRP-reinforced T/Y-joints via ZPSS approach. Ocean Engineering, 261, 112092. doi:10.1016/j.oceaneng.2022.112092.
[26] Sadat Hosseini, A., Bahaari, M. R., & Lesani, M. (2022). Formulas for Stress Concentration Factors in T&Y Steel Tubular Joints Stiffened with FRP under Bending Moments. International Journal of Steel Structures, 22(5), 1408–1432. doi:10.1007/s13296-022-00651-w.
[27] Zavvar, E., Henneberg, J., & Guedes Soares, C. (2023). Stress concentration factors in FRP-reinforced tubular DKT joints under axial loads. Marine Structures, 90, 429–52. doi:10.1016/j.marstruc.2023.103429.
[28] Mohamed, H. S., Yang, X. S., Liao, F. Y., & Fu, T. (2024). SCF determination of the CFRP- fortified T/Y-joints exposed to IPB or OPB moment via ZPSS approach. Structures, 61. doi:10.1016/j.istruc.2024.105997.
[29] Rashnooie, R., Zeinoddini, M., Ghafoori, E., & Sharafi, M. (2024). Experimental and numerical study on the in-plane bending behaviour of FRP-strengthened steel tubular welded T-joints. Thin-Walled Structures, 201, 112000. doi:10.1016/j.tws.2024.112000.
[30] Zavvar, E., Sousa, F., Giannini, G., Taveira-Pinto, F., & Santos, P. R. (2024). Probability of maximum values of stress concentration factors in tubular DKT-joints reinforced with FRP under axial loads. Structures, 66, 106809. doi:10.1016/j.istruc.2024.106809.
[31] Zavvar, E., Sousa, F., Taveira-Pinto, F., & Rosa Santos, P. (2024). Multivariate Data Analysis of Maximum Stress Concentration Factors in FRP-Retrofitted Two-Planar KT-Joints under Axial Loads for Offshore Renewables. Journal of Marine Science and Engineering, 12(8), 1451. doi:10.3390/jmse12081451.
[32] Rezadoost, P., & Nassiraei, H. (2024). Best Probability Distribution for SCFs in FRP-Strengthened T/Y-Shaped Connections under Out-of-Plane Bending Loading. 21-22 May, 2024, University of Zanjan, Zanjan, Iran.
[33] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Nouman, H. (2023). Empirical modeling of stress concentration factors using finite element analysis and artificial neural networks for the fatigue design of tubular KT-joints under combined loading. Fatigue and Fracture of Engineering Materials and Structures, 46(11), 4333–4349. doi:10.1111/ffe.14122.
[34] Ahmadi, H., Lotfollahi-Yaghin, M. A., & Aminfar, M. H. (2011). Effect of stress concentration factors on the structural integrity assessment of multi-planar offshore tubular DKT-joints based on the fracture mechanics fatigue reliability approach. Ocean Engineering, 38(17–18), 1883–1893. doi:10.1016/j.oceaneng.2011.08.004.
[35] Sadat Hosseini, A., Bahaari, M. R., Lesani, M., & Hajikarimi, P. (2021). Static load-bearing capacity formulation for steel tubular T/Y-joints strengthened with GFRP and CFRP. Composite Structures, 268, 263–81. doi:10.1016/j.compstruct.2021.113950.
[36] Moffat, D. G., Kruzelecki, J., & Blachut, J. (1996). The Effects of Chord Length and Boundary Conditions on the Static Strength of a Tubular T-Joint under Brace Compression Loading. Marine Structures, 9(10), 935–947. doi:10.1016/0951-8339(96)00007-X.
[37] Smedley, P., & Fisher, P. (1991). Stress concentration factors for simple tubular joints. Health and Safety Executive - Offshore Technology Report.
[38] ARSEM. (1987). Design Guides for Offshore Structures, Volume 1 - Welded Tubular Joints. Association de Recherche sur les Structures Métalliques Marines (ARSEM), Paris, France.
[39] API (2014). Recommended Practice for Planning, D. and C.F.O.P.-W.S.D. (2014). API RP 2A WSD 22nd Edition, vol. 2014. American Petroleum Institute (API), Washington, United States.
[40] Ahmadi, H., & Nejad, A. Z. (2016). Stress concentration factors in uniplanar tubular KT-joints of jacket structures subjected to in-plane bending loads. International Journal of Maritime Technology, 5, 27-39.
[41] Ahmadi, H. (2019). Probabilistic analysis of the DoB in axially-loaded tubular KT-joints of offshore structures. Applied Ocean Research, 87, 64–80. doi:10.1016/j.apor.2019.03.018.
[42] Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2013). Experimental and numerical investigation of geometric SCFs in internally ring-stiffened tubular KT-joints of offshore structures. Journal of the Persian Gulf, 4(12), 1-12.
[43] Ahmadi, H., & Zavvar, E. (2015). Stress concentration factors induced by out-of-plane bending loads in ring-stiffened tubular KT-joints of jacket structures. Thin-Walled Structures, 91, 82–95. doi:10.1016/j.tws.2015.02.011.
[44] Zhang, Y., Zhang, K., Zhao, H., Xin, J., & Duan, M. (2018). Stress analysis of adhesive in a cracked steel plate repaired with CFRP. Journal of Constructional Steel Research, 145, 210–217. doi:10.1016/j.jcsr.2018.02.029.
[45] Ullah, H., Harland, A. R., & Silberschmidt, V. V. (2012). Experimental and numerical analysis of damage in woven GFRP composites under large-deflection bending. Applied Composite Materials, 19(5), 769–783. doi:10.1007/s10443-011-9242-7.
[46] Ganesh, V. K., & Naik, N. K. (1993). Some strength studies on FRP laminates. Composite Structures, 24(1), 51–58. doi:10.1016/0263-8223(93)90054-T.
[47] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Khan, A. (2025). Stress Concentration Factors in CFRP-Reinforced KT-Joints under Multiplanar Bending Loads: Experimental and Numerical Investigation. Results in Engineering, 25(103745), 103745. doi:10.1016/j.rineng.2024.103745.
[48] Ahmadi, H., & Zavvar, E. (2020). Degree of bending (DoB) in offshore tubular KT-joints under the axial, in-plane bending (IPB), and out-of-plane bending (OPB) loads. Applied Ocean Research, 95, 1187–206. doi:10.1016/j.apor.2019.102015.
[49] Ahmadi, H., Yeganeh, A., Mohammadi, A. H., & Zavvar, E. (2016). Probabilistic analysis of stress concentration factors in tubular KT-joints reinforced with internal ring stiffeners under in-plane bending loads. Thin-Walled Structures, 99, 58–75. doi:10.1016/j.tws.2015.11.010.
[50] Hobbacher, A. (1996). Fatigue Design of Welded Joints and Components. Recommendations of IIW Joint Working Group XIII-1539–96/XV-845–96, The International Institute of Welding, Genoa, Italy.
[51] Gurney, T. R. (1991). The Fatigue Strength of Transverse Fillet Welded Joints. The Fatigue Strength of Transverse Fillet Welded Joints, Abington Publishing, Parks Blvd Nashville, United States. doi:10.1533/9780857093257.
[52] Poutiainen, I., Tanskanen, P., & Marquis, G. (2004). Finite element methods for structural hot spot stress determination - A comparison of procedures. International Journal of Fatigue, 26(11), 1147–1157. doi:10.1016/j.ijfatigue.2004.04.003.
[53] Radaj, D., Sonsino, C., & Fricke, W. (2006). Fatigue assessment of welded joints by local approaches, Second Edition. CRC Press, Boca Raton, United States. doi:10.1201/9781439832806.
[54] Maddox, S. J. (2002). Fatigue Strength of Welded Structures. In Fatigue Strength of Welded Structures. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/c2013-0-17455-7.
[55] Manson, S. S. (1965). Fatigue: A Complex Subject-Some Simple Approximations some approximations useful in design are outlined and their application illustrated. Experimental Mechanics, 5(4), 193–226.
[56] Niemi, E., Fricke, W., & Maddox, S. J. (2018). The Structural Hot-Spot Stress Approach to Fatigue Analysis. In: Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components. IIW Collection, Springer, Singapore. doi:10.1007/978-981-10-5568-3_2.
[57] Hobbacher, A. F. (2017). Erratum to: Recommendations for Fatigue Design of Welded Joints and Components. Recommendations for Fatigue Design of Welded Joints and Components, E1–E1, Springer, Cham, Switzerland. doi:10.1007/978-3-319-23757-2_7.
[58] Lesani, M., Bahaari, M. R., & Shokrieh, M. M. (2015). FRP wrapping for the rehabilitation of Circular Hollow Section (CHS) tubular steel connections. Thin-Walled Structures, 90, 216–234. doi:10.1016/j.tws.2014.12.013.
[59] Hawileh, R. A., Musto, H. A., Abdalla, J. A., & Naser, M. Z. (2019). Finite element modeling of reinforced concrete beams externally strengthened in flexure with side-bonded FRP laminates. Composites Part B: Engineering, 173, 106952. doi:10.1016/j.compositesb.2019.106952.
[60] Fu, Y., Tong, L., He, L., & Zhao, X. L. (2016). Experimental and numerical investigation on behavior of CFRP-strengthened circular hollow section gap K-joints. Thin-Walled Structures, 102, 80–97. doi:10.1016/j.tws.2016.01.020.
[61] Efthymiou, M. (1988). Development of SCF formulae and generalized influence functions for use in fatigue analysis. OTJ 88. Recent Developments in Tubular Joints Technology, 4-5 October, 1988, Surrey, United Kingdom.
[62] N'Diaye, A., Hariri, S., Pluvinage, G., & Azari, Z. (2007). Stress concentration factor analysis for notched welded tubular T-joints. International Journal of Fatigue, 29(8), 1554–1570. doi:10.1016/j.ijfatigue.2006.10.030.
[63] Ahmadi, H., Lotfollahi-Yaghin, M. A., & Yong-Bo, S. (2013). Chord-side SCF distribution of central brace in internally ring-stiffened tubular KT-joints: A geometrically parametric study. Thin-Walled Structures, 70, 93–105. doi:10.1016/j.tws.2013.04.011.
[64] Mohammed, A., Dasari, S. R., Khandelwal, S. K., & Desai, Y. M. (2024). Advancements in stress concentration factor computation for tubular X joints through Bayesian-optimized neural networks. Structures, 67, 106962. doi:10.1016/j.istruc.2024.106962.
[65] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Iqbal, M., & Rasul, A. (2024). Optimization of fibre orientation for composite reinforcement of circular hollow section KT-joints. International Journal of Structural Integrity, 15(4), 717–730. doi:10.1108/IJSI-04-2024-0054.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
