Stress Concentration Factors in Tubular T-Joint Braces Under Compressive Loads Using Artificial Neural Networks
Downloads
Stress concentration factors (SCFs) are often calculated using formulas based on experimental testing and finite element analysis (FEA). While maximum SCF could occur at any location along the brace axis of the tubular T-joint’s brace, only the SCFs at the crown and saddle points can be determined from the available formulae, which can result in imprecise fatigue life determination. The current study presents a methodology to determine the SCFs in T-joints using FEA and ANN. ANNs are more effective than conventional data-fitting techniques at modelling intricate phenomena. In this work, parametric equations to estimate the SCFs of the T-joint’s brace under compressive loading were developed. Utilizing parametric equations allows for rapid estimates of SCFs, in contrast to time-consuming FEA and expensive testing. The equations are based on an artificial neural network’s training weights and biases (ANN). 625 finite element simulations were performed on tubular T-joints with various dimensions under compressive loads to determine the SCFs at the brace of the T-joint. These SCFs were then used to train an ANN. The weights and biases of the ANN were subsequently used to derive equations for calculating SCFs based on dimensionless parameters. The equations can estimate the SCF of a T-joint brace with less than 7% error and a root mean square error (RMSE) of less than 0.19.
Downloads
[1] Ma, M., Liu, X., Yu, X., & Wang, X. (2023). Fatigue life prediction for notched specimen considering modified critical plane method. Fatigue and Fracture of Engineering Materials and Structures, 46(3), 1031–1044. doi:10.1111/ffe.13917.
[2] Liu, X., & Ma, M. (2023). Cumulative fatigue damage theories for metals: review and prospects. International Journal of Structural Integrity, 14(5), 629–662. doi:10.1108/IJSI-09-2022-0119.
[3] Rasul, A., Karuppanan, S., Perumal, V., Ovinis, M., & Iqbal, M. (2024). Ultimate Strength of Internal Ring-Reinforced KT Joints Under Brace Axial Compression. Civil Engineering Journal (Iran), 10(5), 1543–1560. doi:10.28991/CEJ-2024-010-05-012.
[4] Chandramohan, D. L., Roy, K., Taheri, H., Karpenko, M., Fang, Z., & Lim, J. B. P. (2022). A State-of-the-Art Review of Fillet Welded Joints. Materials, 15(24). doi:10.3390/ma15248743.
[5] Feng, R., Tang, C., Roy, K., Chen, Z., Chen, B., & Lim, J. B. P. (2020). An experimental study on stress concentration factors of stainless steel hybrid tubular K-joints. Thin-Walled Structures, 157, 107064. doi:10.1016/j.tws.2020.107064.
[6] Feng, R., Chen, L., Chen, Z., Chen, B., Roy, K., & Lim, J. B. P. (2021). Experiments on stainless steel hybrid K-joints with square braces and circular chord. Journal of Constructional Steel Research, 185, 106865. doi:10.1016/j.jcsr.2021.106865.
[7] Feng, R., Tang, C., Chen, Z., Roy, K., Chen, B., & Lim, J. B. P. (2021). A numerical study and proposed design rules for stress concentration factors of stainless steel hybrid tubular K-joints. Engineering Structures, 233, 111916. doi:10.1016/j.engstruct.2021.111916.
[8] Feng, R., Xu, J., Chen, Z., Roy, K., Chen, B., & Lim, J. B. P. (2021). Numerical investigation and design rules for stress concentration factors of stainless-steel hybrid tubular joints. Thin-Walled Structures, 163, 107783. doi:10.1016/j.tws.2021.107783.
[9] Saini, D. S., Karmakar, D., & Ray-Chaudhuri, S. (2016). A review of stress concentration factors in tubular and non-tubular joints for design of offshore installations. Journal of Ocean Engineering and Science, 1(3), 186–202. doi:10.1016/j.joes.2016.06.006.
[10] Xu, X., Shao, Y., Gao, X., & Mohamed, H. S. (2022). Stress concentration factor (SCF) of CHS gap TT-joints reinforced with CFRP. Ocean Engineering, 247, 110722. doi:10.1016/j.oceaneng.2022.110722.
[11] Petinov, S., & Guchinsky, R. (2018). Criteria for Fatigue Failure of Materials: Application in Fatigue Assessment of Structures. Advanced Engineering Forum, 26, 1–8. doi:10.4028/www.scientific.net/aef.26.1.
[12] Wardenier, J., Kurobane, Y., Packer, J. A., Van der Vegte, G. J., & Zhao, X. L. (2008). Design guide for circular hollow section (CHS) joints under predominantly static loading. Construction with hollow steel sections, CIDECT, Geneva, Switzerland.
[13] Nassiraei, H., & Rezadoost, P. (2020). Stress concentration factors in tubular T/Y-joints strengthened with FRP subjected to compressive load in offshore structures. International Journal of Fatigue, 140, 105719. doi:10.1016/j.ijfatigue.2020.105719.
[14] Lai, J., Wang, Y., Wei, Y., Liang, J., & Liu, X. (2022). The prediction of residual life of liquid-storage tank considering the tank wall surface state. International Journal of Structural Integrity, 13(6), 985–998. doi:10.1108/IJSI-05-2022-0070.
[15] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Iqbal, M., & Rasul, A. (2024). Optimization of fibre orientation for composite reinforcement of circular hollow section KT-joints. International Journal of Structural Integrity, 15(4), 717–730. doi:10.1108/ijsi-04-2024-0054.
[16] Smedley, P., & Fisher, P. (1991). Stress concentration factors for simple tubular joints. ISOPE International Ocean and Polar Engineering Conference, 11-16 August, 1991, Edinburgh, United Kingdom.
[17] Hellier, A. K., Connolly, M. P., & Dover, W. D. (1990). Stress concentration factors for tubular Y- and T-joints. International Journal of Fatigue, 12(1), 13–23. doi:10.1016/0142-1123(90)90338-F.
[18] OTH-354 (1997). Stress Concentration Factors for Simple Tubular Joints: Assessment of Existing and Development of New Parametric Formulae. UK Health and Safety Executive, Bootle, United Kingdom.
[19] Kuang, J. G., Potvin, A. B., & Leick, R. D. (1975). Stress Concentration in Tubular Joints. Offshore Technology Conference. doi:10.4043/2205-ms.
[20] Wordsworth, A. C., & Smedley, G. P. (1978). Stress concentrations at unstiffened tubular joints. European Offshore Steels Research Seminar, 27-29 November, 1978, Abington Hall, United Kingdom.
[21] UEG. (1985). Design of tubular joints for offshore structures. United European Gastroenterology (UEG), Vienna, Austria.
[22] Efthymiou, M. (1988). Development of SCF formulae and generalised influence functions for use in fatigue analysis. OTJ 88, Surrey, United Kingdom.
[23] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Nouman, H. (2023). Empirical modeling of stress concentration factors using finite element analysis and artificial neural networks for the fatigue design of tubular KT-joints under combined loading. Fatigue & Fracture of Engineering Materials & Structures, 46(11), 4333–4349. doi:10.1111/ffe.14122.
[24] Chang, E., & Dover, W. D. (1999). Parametric equations to predict stress distributions along the intersection of tubular X and DT-joints. International Journal of Fatigue, 21(6), 619–635. doi:10.1016/S0142-1123(99)00018-3.
[25] Gulati, K. C., Wang, W. J., & Kan, D. K. Y. (1982). An Analytical Study of Stress Concentration Effects in Multibrace Joints Under Combined Loading. Offshore Technology Conference. doi:10.4043/4407-ms.
[26] API Recommended Practice 2A-WSD. (2007). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms — Working Stress Design. American Petroleum Institute (API), Washington, United States.
[27] DNVGL-RP-C203. (2024). Fatigue design of offshore steel structures. DNV GL, Bærum, Norway.
[28] ISO 19902:2020. (2020). Petroleum and natural gas industries-Fixed steel offshore structures. International Organization for Standardization (ISO), Geneva, Switzerland.
[29] Rasul, A., Karuppanan, S., Perumal, V., Ovinis, M., & Iqbal, M. (2024). An artificial neural network model for determining stress concentration factors for fatigue design of tubular T-joint under compressive loads. International Journal of Structural Integrity, 15(4), 633–652. doi:10.1108/IJSI-02-2024-0034.
[30] Ahmadi, H., Lotfollahi-Yaghin, M. A., & Aminfar, M. H. (2011). Geometrical effect on SCF distribution in uni-planar tubular DKT-joints under axial loads. Journal of Constructional Steel Research, 67(8), 1282–1291. doi:10.1016/j.jcsr.2011.03.011.
[31] Lotfollahi-Yaghin, M. A., & Ahmadi, H. (2010). Effect of geometrical parameters on SCF distribution along the weld toe of tubular KT-joints under balanced axial loads. International Journal of Fatigue, 32(4), 703–719. doi:10.1016/j.ijfatigue.2009.10.008.
[32] Chang, E., & Dover, W. D. (1996). Stress concentration factor parametric equations for tubular X and DT joints. International Journal of Fatigue, 18(6), 363–387. doi:10.1016/0142-1123(96)00017-5.
[33] N’Diaye, A., Hariri, S., Pluvinage, G., & Azari, Z. (2009). Stress concentration factor analysis for welded, notched tubular T-joints under combined axial, bending and dynamic loading. International Journal of Fatigue, 31(2), 367–374. doi:10.1016/j.ijfatigue.2008.07.014.
[34] Lo, M., Karuppanan, S., & Ovinis, M. (2022). ANN-and FEA-Based Assessment Equation for a Corroded Pipeline with a Single Corrosion Defect. Journal of Marine Science and Engineering, 10(4), 476. doi:10.3390/jmse10040476.
[35] Miao, K., Pan, Z., Chen, A., Wei, Y., & Zhang, Y. (2023). Machine learning-based model for the ultimate strength of circular concrete-filled fiber-reinforced polymer–steel composite tube columns. Construction and Building Materials, 394(May), 132134. doi:10.1016/j.conbuildmat.2023.132134.
[36] Rasul, A., Karuppanan, S., Perumal, V., Ovinis, M., Iqbal, M., & Alam, K. (2024). Empirical modeling of stress concentration factors using artificial neural networks for fatigue design of tubular T-joint under in-plane and out-of-Plane bending moments. International Journal of Structural Integrity, 15(4), 757–776. doi:10.1108/ijsi-03-2024-0043.
[37] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Hina, A. (2023). An Artificial Neural Network Model for the Stress Concentration Factors in KT-Joints Subjected to Axial Compressive Load. Materials Science Forum, 1103, 163–175. doi:10.4028/p-ypo50i.
[38] ANSYS. (2022). Ansys Workbench | Simulation Integration Platform. Ansys, Canonsburg, United States.
[39] MathWorks. (2021). R2021a - Updates to the MATLAB and Simulink product families - MATLAB & Simulink. MathWorks, Natick, United States.
[40] PTC. (2023). Creo CAD Software: Enable the Latest in Design. PTC, Boston, United States.
[41] N’Diaye, A., Hariri, S., Pluvinage, G., & Azari, Z. (2007). Stress concentration factor analysis for notched welded tubular T-joints. International Journal of Fatigue, 29(8), 1554–1570. doi:10.1016/j.ijfatigue.2006.10.030.
[42] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Iqbal, M. (2025). Design and Testing of a Test Rig for Tubular Joints Hot-Spot Stress Determination. Results in Engineering, 25(January), 103931. doi:10.1016/j.rineng.2025.103931.
[43] AWS D1.1/D1.1M:2020. (2020). Structural Welding Code-Steel. American National Standards Institute, Washington, United States.
[44] Hectors, K., & De Waele, W. (2021). Influence of weld geometry on stress concentration factor distributions in tubular joints. Journal of Constructional Steel Research, 176. doi:10.1016/j.jcsr.2020.106376.
[45] Paradowska, A., Price, J. W. H., Dayawansa, P., Kerezsi, B., Zhao, X. L., & Ibrahim, R. (2006). Study of influence of post weld heat treatment on residual stress distribution in tubular joints. Welding Research Abroad, 52(2), 10-19.
[46] Masilamani, R., & Nallayarasu, S. (2021). Experimental and numerical investigation of ultimate strength of ring-stiffened tubular T-joints under axial compression. Applied Ocean Research, 109, 102576. doi:10.1016/j.apor.2021.102576.
[47] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Khan, A. (2025). Stress Concentration Factors in CFRP-Reinforced KT-Joints under Multiplanar Bending Loads: Experimental and Numerical Investigation. Results in Engineering, 25, 103745. doi:10.1016/j.rineng.2024.103745.
[48] IIW-XV-E. (1999). Recommended fatigue design procedure for welded hollow section joints. International Institute of Welding, Yutz, France.
[49] Koric, S., Viswantah, A., Abueidda, D. W., Sobh, N. A., & Khan, K. (2024). Deep learning operator network for plastic deformation with variable loads and material properties. Engineering with Computers, 40(2), 917–929. doi:10.1007/s00366-023-01822-x.
[50] Kumar, S. D. V., Karuppanan, S., & Ovinis, M. (2021). Failure pressure prediction of high toughness pipeline with a single corrosion defect subjected to combined loadings using artificial neural network (Ann). Metals, 11(2), 1–25. doi:10.3390/met11020373.
[51] Panchal, F. S., & Panchal, M. (2014). Review on methods of selecting number of hidden nodes in artificial neural network. International Journal of Computer Science and Mobile Computing, 3(11), 455-464.
[52] Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2015). Stress concentration due to in-plane bending (IPB) loads in ring-stiffened tubular KT-joints of offshore structures: Parametric study and design formulation. Applied Ocean Research, 51, 54–66. doi:10.1016/j.apor.2015.02.009.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.