Infrared Thermal Monitoring of Intersection Elements of Urban Road Infrastructure and Road Traffic Via Drone
Downloads
Doi: 10.28991/CEJ-2025-011-05-02
Full Text: PDF
[2] Zhao, Q., Guo, Y., Ye, T., Gasparrini, A., Tong, S., Overcenco, A., Urban, A., Schneider, A., Entezari, A., Vicedo-Cabrera, A. M., Zanobetti, A., Analitis, A., Zeka, A., Tobias, A., Nunes, B., Alahmad, B., Armstrong, B., Forsberg, B., Pan, S.-C., ... Li, S. (2021). Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. The Lancet Planetary Health, 5(7), e415–e425. doi:10.1016/s2542-5196(21)00081-4.
[3] Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R. F., Pegenaute, F., Herrmann, F. R., Robine, J. M., Basagaña, X., Tonne, C., Antó, J. M., & Achebak, H. (2023). Heat-related mortality in Europe during the summer of 2022. Nature Medicine, 29(7), 1857–1866. doi:10.1038/s41591-023-02419-z.
[4] Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Jay, O. (2021). Hot weather and heat extremes: health risks. The Lancet, 398(10301), 698–708. doi:10.1016/s0140-6736(21)01208-3.
[5] Batson, A. (2019). Road pavement acceptance during construction, Guide note. Department of Infrastructure Planning and Logistics, Northern Territory Government, Darwin, Australia.
[6] Freeman, R. B., & Grogan, W. P. (1998). Statistical Acceptance Plan for Asphalt Pavement Construction. Defense Technical Information Center, Fort Belvoir, Virginia, United States. doi:10.21236/ada347907.
[7] Department for Transport. (2021). Road Condition Data and Technology Review: Position Paper, Research and analysis. Department for Transport, London, United Kingdom.
[8] Leigh, A., & Neill, C. (2011). Can national infrastructure spending reduce local unemployment? Evidence from an Australian roads program. Economics Letters, 113(2), 150–153. doi:10.1016/j.econlet.2011.05.037.
[9] Jenelius, E., & Mattsson, L. G. (2015). Road network vulnerability analysis: Conceptualization, implementation and application. Computers, Environment and Urban Systems, 49, 136–147. doi:10.1016/j.compenvurbsys.2014.02.003.
[10] Qiang, Q., & Nagurney, A. (2008). A unified network performance measure with importance identification and the ranking of network components. Optimization Letters, 2(1), 127–142. doi:10.1007/s11590-007-0049-2.
[11] Sullivan, J. L., Novak, D. C., Aultman-Hall, L., & Scott, D. M. (2010). Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach. Transportation Research Part A: Policy and Practice, 44(5), 323–336. doi:10.1016/j.tra.2010.02.003.
[12] Taylor, M. A. P., & Susilawati. (2012). Remoteness and accessibility in the vulnerability analysis of regional road networks. Transportation Research Part A: Policy and Practice, 46(5), 761–771. doi:10.1016/j.tra.2012.02.008.
[13] Blom, C. M., & Guthrie, P. M. (2015). Surveying customer perceptions of road infrastructure comfort. Infrastructure Asset Management, 2(4), 173–185. doi:10.1680/jinam.15.00007.
[14] Tarigan, H., Matondang, A. R., Lubis, S., & Sirojuzilam, S. (2021). The Effect of Road Transportation Infrastructure on Freight Transport Mobility and Regional Economy in Indonesia. Journal of Asian Finance, Economics and Business, 8(3), 645–654. doi:10.13106/jafeb.2021.vol8.no3.0645.
[15] Desmet, K., & Henderson, J. V. (2015). The Geography of Development within Countries. Handbook of Regional and Urban Economics, 1457–1517, Elsevier, Amsterdam, Netherland. doi:10.1016/b978-0-444-59531-7.00022-3.
[16] VTPI. (2020). Online TDM Encyclopedia. Victoria Transport Policy Institute, Victoria, Canada. Available online: https://www.vtpi.org/tdm/ (accessed on April 2025).
[17] Mindell, J. S., & Birley, M. (2020). Qualitative health impact assessment. Traffic-Related Air Pollution, 311–337, Elsevier, Amsterdam, Netherland. doi:10.1016/b978-0-12-818122-5.00012-0.
[18] Negev, M., Levine, H., Davidovitch, N., Bhatia, R., & Mindell, J. (2012). Integration of health and environment through health impact assessment: Cases from three continents. Environmental Research, 114, 60–67. doi:10.1016/j.envres.2012.02.003.
[19] Papp, C. R., & Berchi, G. M. (2019). State of the art report and gap analysis in the field of environmentally-friendly transport infrastructure development. Danube Transnational Programme TRANSGREEN Project-WWF Romania, Budapest, Hungary.
[20] Decae, R., Goldenbeld, C., & Hermens, f. (2021). Road safety targets Monitoring report, Version 1.1, May 2021, Reporting period 2000-2020. European Road Safety Observatory, Brussels, Belgium.
[21] World Health Organization (WHO). (2016). Post-crash response Supporting those affected by road traffic crashes. World Health Organization (WHO), Geneva, Switzerland.
[22] European Commission. (2018). Post-impact Care. Directorate General for Transport, European Commission, Brussels, Belgium.
[23] A/RES/74/299. (2020). Resolution adopted by the General Assembly on 31 August 2020. Seventy-fourth Session, Improving Global Road Safety, United Nations, New York, United States.
[24] W.H.O. (2021). Decade of Action for Road Safety 2021-2030. World Health Organization (WHO), Geneva, Switzerland.
[25] Speight, J. G. (2016). Asphalt Chemistry. Asphalt Materials Science and Technology, 253–301, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-12-800273-5.00006-4.
[26] Sulyman, M., Sienkiewicz, M., & Haponiuk, J. (2014). Asphalt Pavement Material Improvement: A Review. International Journal of Environmental Science and Development, 5(5), 444–454. doi:10.7763/ijesd.2014.v5.525.
[27] Almeida, A., & Picado-Santos, L. (2022). Asphalt Road Pavements to Address Climate Change Challenges”An Overview. Applied Sciences (Switzerland), 12(24), 12515. doi:10.3390/app122412515.
[28] Krishnan, J. M., & Rajagopal, K. R. (2005). On the mechanical behavior of asphalt. Mechanics of Materials, 37(11), 1085–1100. doi:10.1016/j.mechmat.2004.09.005.
[29] Zhang, C., Tan, Y., Gao, Y., Fu, Y., Li, J., Li, S., & Zhou, X. (2022). Resilience assessment of asphalt pavement rutting under climate change. Transportation Research Part D: Transport and Environment, 109, 103395. doi:10.1016/j.trd.2022.103395.
[30] Gudipudi, P. P., Underwood, B. S., & Zalghout, A. (2017). Impact of climate change on pavement structural performance in the United States. Transportation Research Part D: Transport and Environment, 57, 172–184. doi:10.1016/j.trd.2017.09.022.
[31] Guo, R., Nian, T., & zhou, F. (2020). Analysis of factors that influence anti-rutting performance of asphalt pavement. Construction and Building Materials, 254. doi:10.1016/j.conbuildmat.2020.119237.
[32] Vyas, V., Patil, V. J., Singh, A. P., & Srivastava, A. (2019). Application of infrared thermography for debonding detection in asphalt pavements. Journal of Civil Structural Health Monitoring, 9(3), 325–337. doi:10.1007/s13349-019-00337-8.
[33] Vyas, V., Patil, V. J., Singh, A. P., & Anshuman, A. (2020). Debonding detection in asphalt pavements using infrared thermography. Transportation Research Procedia, 48(2), 3850–3859. doi:10.1016/j.trpro.2020.08.035.
[34] Garg, S., & Misra, S. (2021). Efficiency of NDT techniques to detect voids in grouted post-tensioned concrete ducts. Nondestructive Testing and Evaluation, 36(4), 366-387. doi:10.1080/10589759.2020.1758100.
[35] Vyas, V., & Singh, A. P. (2022). Modeling asphalt pavement condition using artificial neural networks. Materials Today: Proceedings, 62, 1671-1676. doi:10.1016/j.matpr.2022.05.050.
[36] Li, P., Wang, Z., Men, B., Ma, X., Tang, G., & Wang, R. (2023). Use of Multi-Scale Investigation to Evaluate Adhesion Performance of Warm-Mix Polymer-Modified Asphalt. Materials, 16(1), 287. doi:10.3390/ma16010287.
[37] Yun, J., Vigneswaran, S., Lee, M. S., Choi, P., & Lee, S. J. (2023). Effect of Blending and Curing Conditions on the Storage Stability of Rubberized Asphalt Binders. Materials, 16(3), 978. doi:10.3390/ma16030978.
[38] Radziszewski, P., Liphardt, A., Sarnowski, M., Kowalski, K. J., Pokorski, P., Konieczna, K., Król, J. B., Iwański, M., Chomicz-Kowalska, A., Maciejewski, K., Iwański, M. M., & Michalec, M. (2023). Ageing Evaluation of Foamed Polymer Modified Bitumen with Bio-Flux Additive. Materials, 16(6), 2197. doi:10.3390/ma16062167.
[39] Bocci, E., Prosperi, E., Mair, V., & Bocci, M. (2020). Ageing and cooling of hot-mix-asphalt during hauling and paving”a laboratory and site study. Sustainability (Switzerland), 12(20), 1–16. doi:10.3390/su12208612.
[40] Phaltane, P. P. (2016). Effects of Temperature Segregation on the Denisity and Mechanical Properties of Asphalt Mixtures. Master Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, United States. doi:10.31390/gradschool_theses.4477.
[41] Lavin, P. (2003). Asphalt pavements: a practical guide to design, production and maintenance for engineers and architects. CRC Press, London, United Kingdom. doi:10.1201/9781482267716.
[42] Milad, A. A., Adwan, I., Majeed, S. A., Memon, Z. A., Bilema, M., Omar, H. A., Abdolrasol, M. G. M., Usman, A., & Yusoff, N. I. M. (2021). Development of a Hybrid Machine Learning Model for Asphalt Pavement Temperature Prediction. IEEE Access, 9, 158041–158056. doi:10.1109/access.2021.3129979.
[43] Wang, X., Pan, P., & Li, J. (2023). Real-time measurement on dynamic temperature variation of asphalt pavement using machine learning. Measurement: Journal of the International Measurement Confederation, 207. doi:10.1016/j.measurement.2022.112413.
[44] Aljagoub, D., Na, R., Cheng, C., & Shen, Z. (2022). Performance Evaluation of Uncooled UAV Infrared Camera in Detecting Concrete Delamination. Infrastructures, 7(12), 163. doi:10.3390/infrastructures7120163.
[45] Japan International Cooperation Agency. (2013). Information Collection and Confirmation Survey on Road and Bridge Maintenance Management. Japan International Cooperation Agency, Tokyo, Japan.
[46] Mac, V. H., Huh, J., Doan, N. S., Shin, G., & Lee, B. Y. (2020). Thermography-based deterioration detection in concrete bridge girders strengthened with carbon fiber-reinforced polymer. Sensors (Switzerland), 20(11), 1–19. doi:10.3390/s20113263.
[47] JankН, M., & Stryk, J. (2017). Application of infrared camera to bituminous concrete pavements: Measuring vehicle. IOP Conference Series: Materials Science and Engineering, 236(1), 12104. doi:10.1088/1757-899X/236/1/012104.
[48] Omar, T., & Nehdi, M. L. (2017). Thermal detection of subsurface delaminations in reinforced concrete bridge decks using unmanned aerial vehicle. SP-331: Durability of Concrete Structures Incorporating Conventional and Advanced Materials, 1-14. doi:10.14359/51715590.
[49] Ojeda, J. M. P., Huatangari, L. Q., Calderon, B. A. C., Tineo, J. L. P., Panca, C. Z. A., & Pino, M. E. M. (2024). Estimation of the Physical Progress of Work Using UAV and BIM in Construction Projects. Civil Engineering Journal, 10(2), 362-383. doi:10.28991/CEJ-2024-010-02-02.
[50] Worachairungreung, M., Kulpanich, N., Sae-ngow, P., Thanakunwutthirot, K., Anurak, K., & Hemwan, P. (2024). Classification of Coconut Trees Within Plantations from UAV Images Using Deep Learning with Faster R-CNN and Mask R-CNN. Journal of Human, Earth, and Future, 5(4), 560-573. doi:10.28991/HEF-2024-05-04-02.
[51] Lee, S., Moon, H., Choi, Y., & Yoon, D. K. (2018). Analyzing thermal characteristics of urban streets using a thermal imaging camera: A case study on commercial streets in Seoul, Korea. Sustainability (Switzerland), 10(2), 519. doi:10.3390/su10020519.
[52] Yamazaki, F., Murakoshi, A., & Sekiya, N. (2009). Observation of urban heat island using airborne thermal sensors. 2009 Joint Urban Remote Sensing Event, 1-5. doi:10.1109/URS.2009.5137723.
[53] Dekić, J. P., Mitković, P. B., Dinic Branković, M. M., Igić, M. Z., Dekić, P. S., & Mitković, M. P. (2018). The study of effects of greenery on temperature reduction in urban areas. Thermal Science, 988-1000. doi:10.2298/TSCI170530122D.
[54] Kong, F., Yin, H., James, P., Hutyra, L. R., & He, H. S. (2014). Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 128, 35–47. doi:10.1016/j.landurbplan.2014.04.018.
[55] Zhang, Q., Zhou, D., Xu, D., Cheng, J., & Rogora, A. (2022). Influencing factors of the thermal environment of urban green space. Heliyon, 8(11), e11559. doi:10.1016/j.heliyon.2022.e11559.
[56] Weber, N., Haase, D., & Franck, U. (2014). Zooming into temperature conditions in the city of Leipzig: How do urban built and green structures influence earth surface temperatures in the city? Science of the Total Environment, 496, 289–298. doi:10.1016/j.scitotenv.2014.06.144.
[57] Roxon, J., Ulm, F. J., & Pellenq, R. J. M. (2020). Urban heat island impact on state residential energy cost and CO2 emissions in the United States. Urban Climate, 31. doi:10.1016/j.uclim.2019.100546.
[58] Pham Xuan, R., Xiong, Y., Brietzke, A., & Marker, S. (2021). Thermal infrared imaging based facial temperature in comparison to ear temperature during a real-driving scenario. Journal of Thermal Biology, 96. doi:10.1016/j.jtherbio.2020.102806.
[59] Mirones Gómez, B. J. (2021). Thermal comfort in conventional vehicles (ICE) and electric (EV)-Evaluation Methods. Transportation Research Procedia, 58, 662–669. doi:10.1016/j.trpro.2021.11.087.
[60] Afrin, T., Yodo, N., Dey, A., & Aragon, L. G. (2024). Advancements in UAV-Enabled Intelligent Transportation Systems: A Three-Layered Framework and Future Directions. Applied Sciences (Switzerland), 14(20), 9455. doi:10.3390/app14209455.
[61] Bhadoriya, A. S., Vegamoor, V., & Rathinam, S. (2022). Vehicle Detection and Tracking Using Thermal Cameras in Adverse Visibility Conditions. Sensors, 22(12), 4567. doi:10.3390/s22124567.
[62] Tichí½, T., Š vorc, D., RНоiÄka, M., & BÄ›linová, Z. (2021). Thermal feature detection of vehicle categories in the urban area. Sustainability (Switzerland), 13(12), 6873. doi:10.3390/su13126873.
[63] Askarzadeh, T., Bridgelall, R., & Tolliver, D. D. (2025). Drones for Road Condition Monitoring: Applications and Benefits. Journal of Transportation Engineering, Part B: Pavements, 151(1), 04024055. doi:10.1061/jpeodx.pveng-1559.
[64] Choi, J. D., & Kim, M. Y. (2023). A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles and deep learning based object detection. ICT Express, 9(2), 222–227. doi:10.1016/j.icte.2021.12.016.
[65] Yoon, S., & Cho, J. (2022). Deep Multimodal Detection in Reduced Visibility Using Thermal Depth Estimation for Autonomous Driving. Sensors, 22(14), 5084. doi:10.3390/s22145084.
[66] Zhang, Y., Carballo, A., Yang, H., & Takeda, K. (2023). Perception and sensing for autonomous vehicles under adverse weather conditions: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 196, 146–177. doi:10.1016/j.isprsjprs.2022.12.021.
[67] DJI (2025). Support for Mavic 2 Enterprise Advanced. DJI, Shenzhen, China. Available online: https://enterprise.dji.com/mavic-2-enterprise-advanced (accessed on April 2025).
[68] Saliev, D. N., & Damyanov, I. S. (2024). Traffic flow density study at traffic light junction. AIP Conference Proceedings, 3078(1), 50004. doi:10.1063/5.0208304.
[69] Saliev, D. N., & Damyanov, I. S. (2022). Vehicles acceleration rate study for intergreen time of a signal cycle compute. AIP Conference Proceedings, 2449(1), 50007. doi:10.1063/5.0091882.
[70] Chen, W., Wei, K., Wei, J., Han, W., Zhang, X., Hu, G., Wei, S., Niu, L., Chen, K., Fu, Z., Xu, X., Xu, B., & Cui, T. (2022). Research on the Road Performance of Asphalt Mixtures Based on Infrared Thermography. Materials, 15(12), 4309. doi:10.3390/ma15124309.
[71] The Engineering ToolBox. (2003). Emissivity Coefficients of Common Materials: Data & Reference Guide. The Engineering ToolBox. Available online: https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html (accessed on April 2025).
[72] Palmer, J. M., & Grant, B. G. (2009). The art of radiometry. The international society for optics and photonics SPIE, Bellingham, United States. doi:10.1117/3.798237.
[73] Sapritsky, V., & Prokhorov, A. (2020). Blackbody Radiometry: Volume 1: Fundamentals. Springer Nature, Cham, Switzerland. doi:10.1007/978-3-030-57789-6.
[74] Wolfe, W. L. (1998). Introduction to radiometry (Vol. 29). SPIE Press, Bellingham, United States. doi:10.1117/3.287476.
[75] Parr, A. C., Datla, R., & Gardner, J. (2005). Optical Radiometry (Volume 41). Elsevier, Amsterdam, Netherlands.
[76] Howell, J. R., Mengüç, M. P., Daun, K., & Siegel, R. (2020). Thermal radiation heat transfer. CRC press, Boca Raton, United States. doi:10.1201/9780429327308.
[77] Liu, F., Liu, J., & Wang, L. (2022). Deep learning and infrared thermography for asphalt pavement crack severity classification. Automation in Construction, 140, 0926–5805. doi:10.1016/j.autcon.2022.104383.
[78] Kulkarni, N. N., Raisi, K., Valente, N. A., Benoit, J., Yu, T., & Sabato, A. (2023). Deep learning augmented infrared thermography for unmanned aerial vehicles structural health monitoring of roadways. Automation in Construction, 148. doi:10.1016/j.autcon.2023.104784.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
