Numerical Analysis of Lateral and Vertical Deformation of the Embedded Length of Monopile in a Sandy Soil
Downloads
A monopile is a large-diameter steel cylinder partially inserted into seabeds; thus, it is one of the major selections of offshore wind and tower foundations. This study aimed to investigate the effect of monopile diameter, thickness, and ratio of soil embedded depth to height of water on the lateral and vertical displacements of the embedded part of the pile. In the study, the monopile was subjected to a lateral displacement equivalent to 10% of the pile diameter at the pile head in order to examine the lateral and vertical deformations of the embedded length of the pile. The three-dimensional finite element software PLAXIS 3D was used to simulate the study. The soil layer used consisted of one layer of medium-dense sandy soil. The study involved investigating the location along the embedded depths that exhibit zero lateral and vertical displacements; that location was found to depend on the monopile diameter, wall thickness, and ratio of embedded depth to water height. The depth of zero lateral displacement was found to increase as pile rigidity and wall thickness increase. The study shows that increasing the L/H ratio on the embedded depth of zero lateral displacement, LHzero, diminishes with increasing monopile diameter for the same wall thickness. Also, the variation of lateral displacement along pile length demonstrates a constant trend behavior regardless of pile thicknesses and diameters, but the depth of zero lateral displacement, LHzero, was varied. Furthermore, the monopile diameter effect on the vertical displacement shows that as the monopile diameter increases, the depth of zero vertical displacement decreases. Also, as L/H decreased, the depth of zero vertical displacement declined.
Downloads
[1] Hou, G., Xu, K., & Lian, J. (2022). A review on recent risk assessment methodologies of offshore wind turbine foundations. Ocean Engineering, 264, 103–119. doi:10.1016/j.oceaneng.2022.112469.
[2] Kozubal, J., Puła, W., Wyjadłowski, M., & Bauer, J. (2013). Influence of varying soil properties on evaluation of pile reliability under lateral loads. Journal of Civil Engineering and Management, 19(2), 272–284. doi:10.3846/13923730.2012.756426.
[3] Luo, R., Wang, A., Li, J., Ding, W., & Zhu, B. (2024). Simplified Design Method of Laterally Loaded Rigid Monopiles in Cohesionless Soil. Journal of Marine Science and Engineering, 12(2), 208. doi:10.3390/jmse12020208.
[4] Yang, M., Luo, R., & Li, W. (2018). Numerical study on accumulated deformation of laterally loaded monopiles used by offshore wind turbine. Bulletin of Engineering Geology and the Environment, 77(3), 911–921. doi:10.1007/s10064-017-1138-9.
[5] Zhang, L. (2009). Nonlinear analysis of laterally loaded rigid piles in cohesionless soil. Computers and Geotechnics, 36(5), 718–724. doi:10.1016/j.compgeo.2008.12.001.
[6] Higgins, W., Vasquez, C., Basu, D., & Griffiths, D. V. (2013). Elastic Solutions for Laterally Loaded Piles. Journal of Geotechnical and Geoenvironmental Engineering, 139(7), 1096–1103. doi:10.1061/(asce)gt.1943-5606.0000828.
[7] Haiderali, A., Cilingir, U., & Madabhushi, G. (2013). Lateral and Axial Capacity of Monopiles for Offshore Wind Turbines. Indian Geotechnical Journal, 43(3), 181–194. doi:10.1007/s40098-013-0056-4.
[8] Lada, A., Gres, S., Nicolai, G., & Ibsen, L. B. (2014). Response of a stiff monopile for a long-term cyclic loading. DCE Technical Memorandum, Department of Civil Engineering, Aalborg University, Aalborg, Denmark.
[9] Kumar Gupta, B., & Basu, D. (2015). Analysis of offshore wind turbine rigid Monopile Foundation. From Fundamentals to Applications in Geotechnics, IOS Press, Amsterdam, Netherlands. doi:10.3233/978-1-61499-603-3-822.
[10] Kim, D., Choo, Y. W., Park, J. H., & Kwak, K. (2016). Review of offshore monopile design for wind turbine towers. Japanese Geotechnical Society Special Publication, 4(7), 158–162. doi:10.3208/jgssp.v04.k10.
[11] American Petroleum Institute (API). (2011). Geotechnical and Foundation Design Considerations. API RP 2GEO, American Petroleum Institute (API), Washington, United States.
[12] Wang, H., Lehane, B. M., Bransby, M. F., Wang, L. Z., Hong, Y., & Askarinejad, A. (2023). Lateral behavior of monopiles in sand under monotonic loading: Insights and a new simple design model. Ocean Engineering, 277. doi:10.1016/j.oceaneng.2023.114334.
[13] Zachariah, J. P., & Sahoo, J. P. (2021). Response of Laterally Loaded Monopile Using Three-Dimensional Finite Element Analysis. Proceedings of the Indian Geotechnical Conference 2019, Lecture Notes in Civil Engineering, Springer, Singapore. doi:10.1007/978-981-33-6346-5_34.
[14] Byrne, B. W., McAdam, R. A., Burd, H. J., Beuckelaers, W. J. A. P., Gavin, K. G., Houlsby, G. T., Igoe, D. J. P., Jardine, R. J., Martin, C. M., Muirwood, A., Potts, D. M., Gretlund, J. S., Taborda, D. M. G., & Zdravkovic, L. (2020). Monotonic laterally loaded pile testing in a stiff glacial clay till at Cowden. Geotechnique, 70(11), 970–985. doi:10.1680/jgeot.18.PISA.003.
[15] Raktate, T., & Choudhary, R. (2020). Design of Monopile Foundation for Offshore Wind Turbine. E3S Web of Conferences, 170. doi:10.1051/e3sconf/202017001024.
[16] Al-Qaisee, G. S., Ahmed, M. D., & Ahmed, B. A. (2020). Performance of piled raft foundations under the effect of dewatering nearby an open pit. IOP Conference Series: Materials Science and Engineering, 737(1), 737. doi:10.1088/1757-899X/737/1/012081.
[17] Munaga, T., & Gonavaram, K. K. (2021). Influence of Stratified Soil System on Behavior of Laterally Loaded Pile Groups: An Experimental Study. International Journal of Geosynthetics and Ground Engineering, 7(2), 18. doi:10.1007/s40891-021-00263-0.
[18] Yu, F., Zhang, C., Huang, M., Yang, X., & Yao, Z. (2023). Model Tests on Cyclic Responses of a Laterally Loaded Pile Considering Sand Anisotropy and Scouring. Journal of Marine Science and Engineering, 11(2), 255. doi:10.3390/jmse11020255.
[19] Nanda, S., Arthur, I., Sivakumar, V., Donohue, S., Bradshaw, A., Keltai, R., Gavin, K., Mackinnon, P., Rankin, B., & Glynn, D. (2017). Monopiles subjected to uni- and multi-lateral cyclic loading. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 170(3), 246–258. doi:10.1680/jgeen.16.00110.
[20] Alsharedah, Y., Newson, T., & El Naggar, M. H. (2024). A 3-D modelling of monopile behaviour under laterally applied loading. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1), 173. doi:10.1007/s40948-024-00874-7.
[21] Zhu, T., He, R., & Guo, Z. (2024). Numerical simulation of offshore monopiles with reinforcement in shallow soil layer. IOP Conference Series: Earth and Environmental Science, 1337(1), 12069. doi:10.1088/1755-1315/1337/1/012069.
[22] Haiderali, A. E., & Madabhushi, G. S. P. (2025). Effect of loose sand layers within dense sand on the lateral capacity of extra-extra-large monopiles. Marine Georesources and Geotechnology, 43(7), 1324–1338. doi:10.1080/1064119X.2024.2405160.
[23] Menéndez-Vicente, C., López-Querol, S., Harris, J. M., & Tavouktsoglou, N. S. (2025). Numerical study on the stiffening properties of scour protection around monopiles for Offshore Wind Turbines. Engineering Geology, 345, 107835. doi:10.1016/j.enggeo.2024.107835.
[24] He, W., & Takahashi, A. (2025). Dynamic response analysis of monopile-supported offshore wind turbine on sandy ground under seismic and environmental loads. Soil Dynamics and Earthquake Engineering, 189, 109105. doi:10.1016/j.soildyn.2024.109105.
[25] Ji, J., Lin, Z., Li, S., Song, J., & Du, S. (2024). Coupled Newmark seismic displacement analysis of cohesive soil slopes considering nonlinear soil dynamics and post-slip geometry changes. Computers and Geotechnics, 174, 106628. doi:10.1016/j.compgeo.2024.106628.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















