Revolutionizing Recycled Aggregate Concrete: A Dual Approach Using HCl Treatment and Silica Fume

Wajde S. Alyhya, Ghazwan A. Salman, Awad Jadooe

Abstract


Debris from building and demolition projects, as well as the shortage of natural resources, have become more pressing issues on a global scale in recent times. Even though concrete, the utmost adaptable building material, is a vital factor in the development of the infrastructural and industrial sectors, it has been claimed that it is not an environmentally friendly material due to its potential for profound environmental influence beyond its use and critical resource-consumption nature. Nevertheless, it will continue to be the dominant building material utilized globally. The present research aims to investigate the synergistic effects of the treatment of recycled concrete aggregate (RCA) by hydrochloric acid (HCl) and the replacement of cement by silica fume (SF) on the mechanical properties of produced concrete. Four groups of concrete mixes were prepared: (1) untreated recycled concrete aggregate (URCA), (2) HCl-treated recycled concrete aggregate (TRCA), (3) URCA with SF replacement, and (4) TRCA with SF replacement. The HCl treatment was applied at four molarities (0.2M, 0.4M, 0.6M, and 0.8M), while SF was used to replace cement by weight at four ratios (5%, 10%, 15%, and 20%). The results were evaluated in terms of the 7, 14, and 28-day compressive strength. The findings indicated that TRCA mixes significantly outperformed URCA mixes in terms of the mechanical properties, namely the 28-day compressive strength, in which the optimal mix was that with 100% TRCA by 0.4M HCl combined with 5% SF replacement. The results also demonstrated that 0.6M HCl treatment significantly enhanced the quality of RCA by removing weakly adhered mortar, leading to a nearly 21% rise in the 28-day compressive strength compared to URCA with complete replacement. Indeed, adding further SF enhanced the performance, as using 75% of TRCA+10% SF achieved the highest compressive strength of 38.7 MPa at 28 days, equalling around 25% improvement over the URCA with the same replacing level.

 

Doi: 10.28991/CEJ-2025-011-05-08

Full Text: PDF


Keywords


HCL; Molarity; Silica Fume; Untreated Recycled Coarse Aggregate; Treated Recycled Coarse Aggregate.

References


Fediuk, R., Pak, A., & Kuzmin, D. (2017). Fine-Grained Concrete of Composite Binder. IOP Conference Series: Materials Science and Engineering, 262(1), 12025. doi:10.1088/1757-899X/262/1/012025.

Fediuk, R. S., Lesovik, V. S., Svintsov, A. P., Mochalov, A. V., Kulichkov, S. V., Stoyushko, N. Y., Gladkova, N. A., & Timokhin, R. A. (2018). Self-compacting concrete using pretreatmented rice husk ash. Magazine of Civil Engineering, 79(3), 66–76. doi:10.18720/MCE.79.7.

Klyuev, S. V., Klyuev, A. V., Khezhev, T. A., & Pukharenko, Y. V. (2018). High-strength fine-grained fiber concrete with combined reinforcement by fiber. Journal of Engineering and Applied Sciences, 13(S8), 6407–6412. doi:10.3923/jeasci.2018.6407.6412.

de Brito, J., Agrela, F., & Silva, R. V. (2019). Construction and demolition waste. New Trends in Eco-Efficient and Recycled Concrete, 1–22, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-102480-5.00001-4.

Sivamani, J., Neelakantan, T. R., Saravana Kumar, P., Mugesh Kanna, C., Vignesh Harish, H., & Akash, M. R. (2021). Efficient Utilization of Recycled Concrete Aggregates for Structural Applications—An Experimental Study. Proceedings of SECON 2020. SECON 2020. Lecture Notes in Civil Engineering, 97. Springer, Cham, Switzerland. doi:10.1007/978-3-030-55115-5_52.

TC, D. R. (1994). Specifications for concrete with recycled aggregates. Materials and Structures, 27(9), 557–559. doi:10.1007/BF02473217.

Karim, Y., Khan, Z., Alsoufi, M. S., & Yunus, M. (2016). A review on recycled aggregates for the construction industry. American Journal of Civil Engineering and Architecture, 4(1), 32-38.

González-Taboada, I., González-Fonteboa, B., Martínez-Abella, F., & Carro-López, D. (2016). Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Materiales de Construccion, 66(323), e089. doi:10.3989/mc.2016.06415.

Saravanakumar, P., & Dhinakaran, G. (2013). Strength Characteristics of High-Volume Fly Ash–Based Recycled Aggregate Concrete. Journal of Materials in Civil Engineering, 25(8), 1127–1133. doi:10.1061/(asce)mt.1943-5533.0000645.

Tam, V. W. Y., Tam, C. M., & Le, K. N. (2007). Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resources, Conservation and Recycling, 50(1), 82–101. doi:10.1016/j.resconrec.2006.05.012.

Purushothaman, R., Amirthavalli, R. R., & Karan, L. (2015). Influence of Treatment Methods on the Strength and Performance Characteristics of Recycled Aggregate Concrete. Journal of Materials in Civil Engineering, 27(5), 04014168. doi:10.1061/(asce)mt.1943-5533.0001128.

Ismail, S., & Ramli, M. (2013). Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Construction and Building Materials, 44, 464–476. doi:10.1016/j.conbuildmat.2013.03.014.

Kaushik, S., & Bhan, P. S. (2024). Chemical Modifications of Recycled Concrete Aggregate. International Journal of Emerging Science and Engineering, 12(7), 7–12. doi:10.35940/ijese.g9900.12060724.

Forero, J. A., de Brito, J., Evangelista, L., & Pereira, C. (2022). Improvement of the Quality of Recycled Concrete Aggregate Subjected to Chemical Treatments: A Review. Materials, 15(8), 2740. doi:10.3390/ma15082740.

Allal, M., Zeghichi, L., & Larkat, K. (2024). Improvement of mechanical and interfacial properties (ITZ) of concrete based on treated recycled aggregates. Studies in Engineering and Exact Sciences, 5(1), 955–973. doi:10.54021/seesv5n1-050.

Yan, X., Liu, T., & Zhang, B. (2024). Study on Strengthening Treatment of Recycled Aggregate and the Effect on the Mechanical Properties of Concrete. Advances in Transdisciplinary Engineering, 62, 421–426. doi:10.3233/ATDE241016.

Saravanakumar, P., & Dhinakaran, G. (2015). Mechanical and durability properties of slag based recycled aggregate concrete. Iranian Journal of Science and Technology Transactions of Civil Engineering, 39(C2), 271-282.

Zhao, H., & Zhou, A. (2024). Effects of recycled aggregates on mechanical and fractural properties of concrete: Insights from DEM modelling. Composites Part A: Applied Science and Manufacturing, 186(0). doi:10.1016/j.compositesa.2024.108395.

Irfan, M. (2024). Importance of RE Utilization of Aggregate in Developing Concrete from Demolition Concrete Waste: Review. International Journal for Research in Applied Science and Engineering Technology, 12(2), 911–914. doi:10.22214/ijraset.2024.58474.

Sharma, R., Jang, J. G., & Bansal, P. P. (2022). A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete. Journal of Building Engineering, 45(0). doi:10.1016/j.jobe.2021.103314.

Wang, X., Li, X., Zhong, Y., Li, H., & Wang, J. (2024). Properties and Microstructure of an Interfacial Transition Zone Enhanced by Silica Fume in Concrete Prepared with Coal Gangue as an Aggregate. ACS Omega, 9(1), 1870–1880. doi:10.1021/acsomega.3c08560.

Rabab’ah, S. R., Al Hattamleh, O. H., Tarawneh, A. N., & Aldeeky, H. H. (2024). Experimental and ANN Analysis of Shearing Rate Effects on Coarse Sand Crushing. Civil Engineering Journal, 10(3), 824-834. doi:10.28991/CEJ-2024-010-03-011.

Iqbal, M., Zhang, D., Khan, K., Amin, M. N., Ibrahim, M., & Salami, B. A. (2023). Evaluating mechanical, microstructural and durability performance of seawater sea sand concrete modified with silica fume. Journal of Building Engineering, 72. doi:10.1016/j.jobe.2023.106583.

Alamri, M., Ali, T., Ahmed, H., Qureshi, M. Z., Elmagarhe, A., Adil Khan, M., Ajwad, A., & Sarmad Mahmood, M. (2024). Enhancing the engineering characteristics of sustainable recycled aggregate concrete using fly ash, metakaolin and silica fume. Heliyon, 10(7), 29014. doi:10.1016/j.heliyon.2024.e29014.

Trykoz, L., Zinchenko, O., Borodin, D., Kamchatna, S., & Pustovoitova, O. (2024). Effect of treatment types of recycled concrete aggregates on the properties of concrete. Construction and Architecture, 23(3), 129–137. doi:10.35784/bud-arch.6318.

Madhavarao, D. G., Sai, T. V. D., Ramya, T., Mahesh, T., Divya, M., & Babu, B. V. (2023). Evaluating The Performance of Acid-Treated (Hcl-Hno3) Recycled Aggregate in Environmentally Friendly Concrete. International Journal of Innovative Research in Engineering and Management, 10(2), 99–102. doi:10.55524/ijirem.2023.10.2.18.

Kadarla, N., Siempu, R., & Murali Krishna, B. (2024). Studies on Performance of the Treated Recycled Concrete Coarse Aggregate in High-Strength Concrete. Journal of Physics: Conference Series, 2779(1). doi:10.1088/1742-6596/2779/1/012019.

Joseph, H. S., Pachiappan, T., Avudaiappan, S., Maureira-Carsalade, N., Roco-Videla, Á., Guindos, P., & Parra, P. F. (2023). A Comprehensive Review on Recycling of Construction Demolition Waste in Concrete. Sustainability (Switzerland), 15(6), 4932. doi:10.3390/su15064932.

Balasubramani, G., & Palaniappan, M. (2025). Influence of acids and slurries on the properties of recycled concrete aggregates. Matéria (Rio de Janeiro), 30, e20240682. doi:10.1590/1517-7076-RMAT-2024-0682.

Lv, D., Huang, K., & Wang, W. (2023). Influence of pretreatment methods on compressive performance improvement and failure mechanism analysis of recycled aggregate concrete. Materials, 16(10), 3807. doi:10.3390/ma16103807.

Rama Rasagna, A. S. V. S., Siempu, R., & Murali Krishna, B. (2024). Studies on the Mechanical Properties of Recycled Aggregate Concrete using Treated Recycled Coarse Aggregates. Journal of Physics: Conference Series, 2779(1). doi:10.1088/1742-6596/2779/1/012046.

Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2021). Quality improvement of recycled concrete aggregate by removal of residual mortar: A comprehensive review of approaches adopted. Construction and Building Materials, 288, 012046. doi:10.1016/j.conbuildmat.2021.123066.

Ouyang, K., Liu, J., Liu, S., Song, B., Guo, H., Li, G., & Shi, C. (2023). Influence of pre-treatment methods for recycled concrete aggregate on the performance of recycled concrete: A review. Resources, Conservation and Recycling, 188. doi:10.1016/j.resconrec.2022.106717.

Tang, A. J., De Jesus, R., & Cunanan, A. (2019). Microstructure and mechanical properties of concrete with treated recycled concrete aggregates. International Journal of GEOMATE, 16(57), 21–27. doi:10.21660/2019.57.4537.

Panghal, H., & Kumar, A. (2024). Enhancing concrete durability and strength: An innovative approach integrating abrasion and cement slurry treatment for recycled coarse aggregates. Structural Concrete, 26(2), 1455–1476. doi:10.1002/suco.202400387.

Panghal, H., & Kumar, A. (2024). Enhancing concrete performance: Surface modification of recycled coarse aggregates for sustainable construction. Construction and Building Materials, 411. doi:10.1016/j.conbuildmat.2023.134432.

Feng, C., Wang, J., Cui, B., Ye, Z., Guo, H., Zhang, W., & Zhu, J. (2024). Evaluation of techniques for enhancing recycled concrete aggregates: Chemical treatment, biological modification and synergistic reinforcement. Construction and Building Materials, 420. doi:10.1016/j.conbuildmat.2024.135641.

ASTM C109/C109M-11a. (2004). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-11A.

ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

Megaadd MS(D) Company. (2025). Densified micro silica construction chemical. Megaadd MS(D) Company, Sharjah, United Arab Emirates.

ASTM C1240-20. (2003). Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/C1240-20.

BS 5328-2:1997. (1997). Concrete. Methods for specifying concrete mixes (AMD 9691) (AMD 10365) (AMD Corrigendum 10612) (AMD 13877). British Standards Institution (BSI), London, United Kingdom.

Hansen, T. C., & Narud, H. (1983). Recycled concrete and silica fume make calcium silicate bricks. Cement and Concrete Research, 13(5), 626–630. doi:10.1016/0008-8846(83)90051-0.

Li, J., Xiao, H., & Zhou, Y. (2009). Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Construction and Building Materials, 23(3), 1287–1291. doi:10.1016/j.conbuildmat.2008.07.019.

Mukharjee, B. B., & Barai, S. V. (2014). Influence of incorporation of nano-silica and recycled aggregates on compressive strength and microstructure of concrete. Computers and Chemical Engineering, 71(30), 570–578. doi:10.1016/j.conbuildmat.2014.08.040.

Skoyles, E. R. (2000). Material control to avoid waste. Building Research Establishment Digest, London, United Kingdom, 3(259), 1-8,

Alexander, M. G. (1994). Effects of aging on mechanical properties of the interfacial zone between cement paste and rock. Cement and Concrete Research, 24(7), 1277–1285. doi:10.1016/0008-8846(94)90112-0.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-08

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Wajde Shober Alyhya, Ghazwan A. Salman, Awad A. Jadooe

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message