Evaluation of Strength Characteristics of Cement-Stabilized Rammed-Earth Material
Downloads
The traditional method of rammed-earth construction is seeing a resurgence because of its minimal environmental impact and sustainability. Numerous elements, including soil composition, compaction procedure, stabilization methods, moisture content, and ambient conditions, affect the properties of rammed-earth materials. This research work aims to investigate the strength characteristics of cement-stabilized rammed-earth material. The strength characteristics involve compressive strength and splitting tensile strength. There are four soil types involved in the casting of cement-stabilized rammed-earth, i.e., 0C100S, 10C90S, 20C80S, and 30C70S. The moisture contents used are based on the OMC of Thar Desert sand, i.e., 11.5%, 12.5%, and 13.5%. While the cement contents used are, i.e., 5%, 10%, and 15%. The number of specimens cast is equal to 216. The results of compressive strength and splitting tensile strength tests conclude that strength increases with the increase in cement content; however, the increase in moisture content decreases the magnitude of compressive strength and splitting tensile strength. The increase in clay content up to 20% increases the compressive strength; a further increase in clay content, i.e., 30%, results in a reduction of compressive strength. The splitting tensile strength increases with the increase in clay content. The maximum compressive strength equal to 13.43 MPa is achieved in the specimen, i.e., 20C80S15c, with minimum moisture content used, i.e., OMC-1% (or 11.50%). While the maximum splitting tensile strength achieved is 6.68 MPa of the specimen, i.e., 30C70S15c, with a moisture content of 11.50%.
Downloads
[1] Reddy, B. V., & Reddy, B. V. (2022). Compressed earth block & rammed earth structures. Springer Nature, Singapore. doi:10.1007/978-981-16-7877-6.
[2] Heath, A., Lawrence, M., Walker, P., & Fourie, C. (2009). The compressive strength of modern earth masonry. Conference11th International Conference on Non-conventional Materials and Technologies, NOCMAT 2009, 6-9 September, 2009, Bath, United Kingdom.
[3] Jaquin, P. A., Augarde, C. E., Gallipoli, D., & Toll, D. G. (2009). The strength of unstabilised rammed earth materials. Geotechnique, 59(5), 487–490. doi:10.1680/geot.2007.00129.
[4] Reddy, B. V. V., Morel, J. C., Faria, P., Fontana, P., Oliveira, D. V., Serclerat, I., Walker, P., & Maillard, P. (2022). Codes and Standards on Earth Construction. Codes and Standards on Earth Construction. Testing and Characterisation of Earth-based Building Materials and Elements, RILEM State-of-the-Art Reports, 35, Springer, Cham, Switzerland. doi:10.1007/978-3-030-83297-1_7.
[5] Dai, S., Bai, W., & Xiao, J. (2024). Balancing Environmental Impact and Practicality: A Case Study on the Cement-Stabilized Rammed Earth Construction in Southeast Rural China. Sustainability (Switzerland), 16(20), 8731. doi:10.3390/su16208731.
[6] Sri Bhanupratap Rathod, R., & Venkatarama Reddy, B. V. (2021). Strength and stress–strain characteristics of fibre reinforced cement stabilised rammed earth. Materials and Structures/Materiaux et Constructions, 54(2), 52. doi:10.1617/s11527-021-01640-x.
[7] Zeinalnezhad, M., Chofreh, A. G., Goni, F. A., & Klemeš, J. J. (2020). Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System. Journal of Cleaner Production, 261. doi:10.1016/j.jclepro.2020.121218.
[8] Heathcote, K. (2011). The thermal performance of earth buildings. Informes de La Construccion, 63(523), 117–126. doi:10.3989/ic.10.024.
[9] Hall, M. R., Lindsay, R., & Krayenhoff, M. (2012). Modern earth buildings: Materials, engineering, constructions and applications, Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9780857096166.
[10] Keable, J., Keable, R. (2011). Rammed Earth Structures: A Code of Practice. United Kingdom: Practical Action, Rugby, United Kingdom.
[11] Morel, J. C., Pkla, A., & Walker, P. (2007). Compressive strength testing of compressed earth blocks. Construction and Building Materials, 21(2), 303–309. doi:10.1016/j.conbuildmat.2005.08.021.
[12] Maniatidis, V., & Walker, P. (2003). A review of rammed earth construction. Innovation Project “Developing Rammed Earth for UK Housing”, Natural Building Technology Group, Department of Architecture & Civil Engineering, University of Bath, Bath, United Kingdom.
[13] Easton, D., & Easton, T. (2012). Modern rammed earth construction techniques. Modern Earth Buildings: Materials, Engineering, Constructions and Applications, 364–384. doi:10.1533/9780857096166.3.364.
[14] Iqbal, A., Nazir, H., & Awan, M. A. (2025). Investigating traditional construction techniques and local knowledge in response to flood vulnerabilities in Sindh, Pakistan. International Planning Studies, 30(1–2), 191–212. doi:10.1080/13563475.2025.2460701.
[15] Venkatarama Reddy, B. V., & Prasanna Kumar, P. (2011). Cement stabilised rammed earth. Part A: Compaction characteristics and physical properties of compacted cement stabilised soils. Materials and Structures/Materiaux et Constructions, 44(3), 681–693. doi:10.1617/s11527-010-9658-9.
[16] Liu, L., Yao, Y., Zhang, L., & Wang, X. (2022). Study on the mechanical properties of modified rammed earth and the correlation of influencing factors. Journal of Cleaner Production, 374. doi:10.1016/j.jclepro.2022.134042.
[17] Jiang, B., Tan, J., Wan, L., Wang, L., Lu, R., & Jiang, M. (2023). Hygrothermal parameters measurement and building performance study of modified rammed earth materials. Energy and Buildings, 299. doi:10.1016/j.enbuild.2023.113609.
[18] Koutous, A., & Hilali, E. (2023). Compression stress-strain curve of rammed earth: Measuring and modelling. Results in Engineering, 18. doi:10.1016/j.rineng.2023.101012.
[19] Lepakshi, R., & Venkatarama Reddy, B. V. (2020). Shear strength parameters and Mohr-Coulomb failure envelopes for cement stabilised rammed earth. Construction and Building Materials, 249. doi:10.1016/j.conbuildmat.2020.118708.
[20] Badami, S. S., & Nethravathi, S. (2024). Glass fiber reinforced rammed earth stabilized with cement and bagasse ash: empirical relationship between tensile and compressive strength–Part A. Cogent Engineering, 11(1), 2434620. doi:10.1080/23311916.2024.2434620.
[21] Schmitz, L. P., Gosslar, J., Dorresteijn, E., Lowke, D., & Kloft, H. (2024). Experimental investigations on the compaction energy for a robotic rammed earth process. Frontiers in Built Environment, 10. doi:10.3389/fbuil.2024.1363804.
[22] Giuffrida, G., Caponetto, R., Nocera, F., & Cuomo, M. (2021). Prototyping of a novel rammed earth technology. Sustainability (Switzerland), 13(21). doi:10.3390/su132111948.
[23] Koutous, A., & Hilali, E. (2021). Reinforcing rammed earth with plant fibers: A case study. Case Studies in Construction Materials, 14, 1–15,. doi:10.1016/j.cscm.2021.e00514.
[24] Ciancio, D., Jaquin, P., & Walker, P. (2013). Advances on the assessment of soil suitability for rammed earth. Construction and Building Materials, 42, 40-47. doi:10.1016/j.conbuildmat.2012.12.049.
[25] Jayasinghe, C., & Kamaladasa, N. (2007). Compressive strength characteristics of cement stabilized rammed earth walls. Construction and Building Materials, 21(11), 1971–1976. doi:10.1016/j.conbuildmat.2006.05.049.
[26] Ciancio, D., & Boulter, M. (2012). Stabilised rammed earth: A case study in Western Australia. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 165(2), 141–154. doi:10.1680/ensu.10.00003.
[27] Beckett, C., & Ciancio, D. (2014). Effect of compaction water content on the strength of cement-stabilized rammed earth materials. Canadian Geotechnical Journal, 51(5), 583–590. doi:10.1139/cgj-2013-0339.
[28] Morel, J. C., Mesbah, A., Oggero, M., & Walker, P. (2001). Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and environment, 36(10), 1119-1126. doi:10.1016/S0360-1323(00)00054-8.
[29] Cabeza, L. F., Boquera, L., Chàfer, M., & Vérez, D. (2021). Embodied energy and embodied carbon of structural building materials: Worldwide progress and barriers through literature map analysis. Energy and Buildings, 231. doi:10.1016/j.enbuild.2020.110612.
[30] Walker, P., Keable, R., Martin, J., & Maniatidis, V. (2005). Rammed earth: design and construction guidelines. BRE Press, Garston, United Kingdom.
[31] Giuffrida, G., Caponetto, R., & Cuomo, M. (2019). An overview on contemporary rammed earth buildings: Technological advances in production, construction and material characterization. IOP Conference Series: Earth and Environmental Science, 296(1), 012018. doi:10.1088/1755-1315/296/1/012018.
[32] Bui, Q. B., Morel, J. C., Hans, S., & Walker, P. (2014). Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials, 54, 163–169. doi:10.1016/j.conbuildmat.2013.12.067.
[33] Millogo, Y., Morel, J. C., Traoré, K., & Ouedraogo, R. (2012). Microstructure, geotechnical and mechanical characteristics of quicklime-lateritic gravels mixtures used in road construction. Construction and Building Materials, 26(1), 663–669. doi:10.1016/j.conbuildmat.2011.06.069.
[34] Losini, A. E., Lavrik, L., Caruso, M., Woloszyn, M., Grillet, A. C., Dotelli, G., & Gallo Stampino, P. (2022). Mechanical Properties of Rammed Earth Stabilized with Local Waste and Recycled Materials. Bio-Based Building Materials, 1, 113–123. doi:10.4028/www.scientific.net/cta.1.113.
[35] Chen, L., Lan, Z., Wei, C., Ouyang, D., Shi, B., Chen, P., Wang, M., & Xie, T. (2024). Practice and Reflection on Rammed Earth Architecture: The Case Study of Tiles Hill–Xiangshan Campus Reception Centre in China. Buildings, 14(12), 4034. doi:10.3390/buildings14124034.
[36] Montalbano, G., Santi, G., & Khouloud, N. (2024). Rammed Earth Construction: A Circular Solution for Sustainable Building. Proceedings of International Structural Engineering and Construction, 11(1), 1-6. doi:10.14455/ISEC.2024.11(1).SUS-01.
[37] Toufigh, V., & Samadianfard, S. (2022). Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials. Solar Energy, 244, 474–483. doi:10.1016/j.solener.2022.08.049.
[38] Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. doi:10.1016/j.conbuildmat.2014.01.081.
[39] Kardani, N., Zhou, A., Lin, X., & Nazem, M. (2022). Experimental Study and Machine Learning Aided Modelling of the Mechanical Behaviour of Rammed Earth. Geotechnical and Geological Engineering, 40(10), 5007–5027. doi:10.1007/s10706-022-02196-5.
[40] El bourki, A., Koutous, A., & Hilali, E. (2025). Date palm fiber-reinforcement impact on rammed earth mechanical behavior. Construction and Building Materials, 461. doi:10.1016/j.conbuildmat.2025.139918.
[41] Zhou, T., Zhang, H., Zhang, Z., Zhang, L., & Tan, W. (2023). Investigation of intralayer and interlayer shear properties of stabilized rammed earth by direct shear tests. Construction and Building Materials, 367. doi:10.1016/j.conbuildmat.2023.130320.
[42] Sukmak, G., Sukmak, P., Horpibulsuk, S., Phunpeng, V., & Arulrajah, A. (2024). An approach for strength development assessment of cement-stabilized soils with various sand and fine contents. Transportation Geotechnics, 48. doi:10.1016/j.trgeo.2024.101323.
[43] Hashim Mohammed, S., Saeed, K. A., & Ibrahim Al Shaikhli, H. (2024). Evaluation of the strength and microstructural characteristics of stabilized organic clay soil. Case Studies in Chemical and Environmental Engineering, 9. doi:10.1016/j.cscee.2024.100647.
[44] Arcement, B. J., & Wright, S. G. (2001). Evaluation of laboratory compaction procedures for specification of densities for compacting fine sands. Report No. FHWA/TX-02/1874-1, Federal Highway Administration, Washington, United States.
[45] Arrigoni, A., Beckett, C., Ciancio, D., & Dotelli, G. (2017). Life cycle analysis of environmental impact vs. durability of stabilised rammed earth. Construction and Building Materials, 142, 128–136. doi:10.1016/j.conbuildmat.2017.03.066.
[46] Burroughs, S. (2010). Recommendations for the selection, stabilization, and compaction of soil for rammed earth wall construction. Journal of Green Building, 5(1), 101–114. doi:10.3992/jgb.5.1.101.
[47] Gupta, R. (2014). Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls. Case Studies in Construction Materials, 1, 60–68. doi:10.1016/j.cscm.2014.04.002.
[48] Ávila, F., Puertas, E., & Gallego, R. (2021). Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Construction and Building Materials, 270, 121435. doi:10.1016/j.conbuildmat.2020.121435.
[49] Ávila, F., Puertas, E., & Gallego, R. (2022). Characterization of the mechanical and physical properties of stabilized rammed earth: A review. Construction and Building Materials, 325, 1–10. doi:10.1016/j.conbuildmat.2022.126693.
[50] Revilla-Cuesta, V., Faleschini, F., Skaf, M., Ortega-López, V., & Manso, J. M. (2021). Balancing sustainability, workability, and hardened behavior in the mix design of self-compacting concrete. Handbook of Sustainable Concrete and Industrial Waste Management: Recycled and Artificial Aggregate, Innovative Eco-friendly Binders, and Life Cycle Assessment, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/B978-0-12-821730-6.00009-7.
[51] Anysz, H., Rosicki, Ł., & Narloch, P. (2024). Compressive Strengths of Cube vs. Cored Specimens of Cement Stabilized Rammed Earth Compared with ANOVA. Applied Sciences (Switzerland), 14(13), 5746. doi:10.3390/app14135746.
[52] Ariza Flores, V. A., & Ortega Hilario, E. F. (2023). Cement Dosage and Compressive Strength Correlation in Rammed Earth Walls: a Case Study. Tecnia, 33(2), 6–21. doi:10.21754/tecnia.v33i2.1685.
[53] Huang, T., Hou, L., Dai, G., Yang, Z., & Xiao, C. (2024). Investigation on Strength and Flexural Behavior of PVA Fiber-Reinforced and Cemented Clayey Soil. Buildings, 14(8), 2433. doi:10.3390/buildings14082433.
[54] Zamanian, M., Salimi, M., Payan, M., Noorzad, A., & Hassanvandian, M. (2023). Development of high-strength rammed earth walls with alkali-activated ground granulated blast furnace slag (GGBFS) and waste tire textile fiber (WTTF) as a step towards low-carbon building materials. Construction and Building Materials, 394. doi:10.1016/j.conbuildmat.2023.132180.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.