Impact-Echo Method on Short Cylinders: A Numerical and Experimental Investigation
Downloads
Despite the widespread use of Ultrasonic Pulse Velocity (UPV) to estimate the dynamic properties of materials, the accuracy of its results for concrete and rock cylinders, even though it does not depend on cylinder slenderness, is directly affected by the a priori assumption of a specific value of the Poisson's ratio ( ), which can lead to errors of up to 50% in the calculation of the dynamic modulus of elasticity (Ed). In contrast, the Impact Echo (IE) method allows the calculation of Ed without the need-to-know Poisson’s ratio, with an error of approximately 2%, but its results are affected not only by the slenderness ratio (L/D) but also by the inertia effect and the mass of the sensor. In this study, both UPV and IE—longitudinal and torsional—tests were carried out on cylindrical steel and aluminium specimens for six different slenderness values and L/D values ranging from 1-5. The experimental results fully confirm the authors’ proposed shape correction factor (SCF). A numerical analysis of short cylinders is conducted to examine how the mass of the accelerometer used on the IE affects the results. Specifically, aluminium and steel specimens with six different slenderness values were simulated via the finite element method (FEM) via experimental evaluation. Inertia and mass interactions significantly affect the results. Two new correction factors were proposed for steel and aluminium cylinders to address this issue, and three different combinations of NDTs were tested to find that the dynamic properties are very sensitive to these parameters. Poisson’s ratio has been accurately calculated for steel and aluminium cylinders and can be calculated for concrete and rock cores by applying the proposed correction factors.
Downloads
[1] ASTM C597-16. (2023). Standard Test Method for Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0597-16
[2] Panzera, T. H., Christoforo, A. L., de Paiva Cota, F., Ribeiro Borges, P. H., & Bowen, C. R. (2011). Ultrasonic Pulse Velocity Evaluation of Cementitious Materials. Advances in Composite Materials - Analysis of Natural and Man-Made Materials, IntechOpen Limited, London, United Kingdom. doi:10.5772/17167.
[3] Hobbs, B., & Tchoketch Kebir, M. (2007). Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings. Forensic Science International, 167(2–3), 167–172. doi:10.1016/j.forsciint.2006.06.065.
[4] Turgut, P. (2004). Evaluation of the ultrasonic pulse velocity data coming on the field. 4th International Conference on NDE in relation to Structural Integrity for Nuclear and Pressurised Components, 6-8 December, 2004, London, United Kingdom.
[5] Trtnik, G., Kavčič, F., & Turk, G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics, 49(1), 53–60. doi:10.1016/j.ultras.2008.05.001.
[6] Diaferio, M., & Vitti, M. (2020). Correlation Curves to Characterize Concrete Strength by Means of UPV Tests. Proceedings of 1st International Conference on Structural Damage Modelling and Assessment, 4–5, August, 2020, Ghent University, Ghent, Belgium. doi:10.1007/978-981-15-9121-1_16.
[7] Choi, Y., Kim, I. H., Lim, H. J., & Cho, C. G. (2022). Article Investigation of Strength Properties for Concrete Containing Fine-Rubber Particles Using UPV. Materials, 15(10), 3452. doi:10.3390/ma15103452.
[8] Siorikis, V. G., Antonopoulos, C. P., Pelekis, P., Christovasili, K., & Hatzigeorgiou, G. D. (2020). Numerical and experimental evaluation of sonic resonance against ultrasonic pulse velocity and compression tests on concrete core samples. Vibroengineering Procedia, 30, 168–173. doi:10.21595/vp.2020.21328.
[9] Espinosa, A. B., Revilla-Cuesta, V., Skaf, M., Faleschini, F., & Ortega-López, V. (2023). Utility of Ultrasonic Pulse Velocity for Estimating the Overall Mechanical Behavior of Recycled Aggregate Self-Compacting Concrete. Applied Sciences, 13(2), 874. doi:10.3390/app13020874.
[10] ASTM E1876-22. (2022). Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration. ASTM International, Pennsylvania, United States. doi:10.1520/E1876-22.
[11] ASTM C215-19. (2020). Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0215-19.
[12] Coleman, Z. W., & Schindler, A. K. (2025). Investigation of Ground-Penetrating Radar, Impact Echo, and Infrared Thermography Methods to Detect Defects in Concrete Bridge Decks. Transportation Research Record, 2679(1), 169–182. doi:10.1177/03611981221101027.
[13] Thurnherr, C., Muller, A., & Algernon, D. (2025). Drone-based impact-echo inspection system for non-destructive testing of concrete structures. Construction and Building Materials, 477. doi:10.1016/j.conbuildmat.2025.141147.
[14] Yoon, Y. G., Kim, C. M., & Oh, T. K. (2022). A Study on the Applicability of the Impact-Echo Test Using Semi-Supervised Learning Based on Dynamic Preconditions. Sensors, 22(15), 5484. doi:10.3390/s22155484.
[15] Bahati, P. A., Le, V. D., & Lim, Y. (2021). An impact echo method to detect cavities between railway track slabs and soil foundation. Journal of Engineering and Applied Science, 68(1), 7. doi:10.1186/s44147-021-00008-w.
[16] Sansalone, M. (1997). Impact-echo: The complete story. ACI Structural Journal, 94(6), 777–786. doi:10.14359/9737.
[17] Qasrawi, H. Y. (2000). Concrete strength by combined nondestructive methods simply and reliably predicted. Cement and Concrete Research, 30(5), 739–746. doi:10.1016/S0008-8846(00)00226-X.
[18] Medina, R., & Bayón, A. (2010). Elastic constants of a plate from impact-echo resonance and Rayleigh wave velocity. Journal of Sound and Vibration, 329(11), 2114–2126. doi:10.1016/j.jsv.2009.12.026.
[19] Nieves, F. J., Gascón, F., & Bayón, A. (2003). Measurement of the dynamic elastic constants of short isotropic cylinders. Journal of Sound and Vibration, 265(5), 917–933. doi:10.1016/S0022-460X(02)01563-8.
[20] Lee, K.-M., Kim, D.-S., & Kim, J.-S. (1997). Determination of dynamic Young’s modulus of concrete at early ages by impact resonance test. KSCE Journal of Civil Engineering, 1(1), 11–18. doi:10.1007/bf02830459.
[21] Kheder, G. F. (1999). A two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Materials and Structures, 32(6), 410–417. doi:10.1007/bf02482712.
[22] Nieves, F. J., Gascón, F., & Bayón, A. (2000). Precise and direct determination of the elastic constants of a cylinder with a length equal to its diameter. Review of Scientific Instruments, 71(6), 2433–2439. doi:10.1063/1.1150632.
[23] Malone, C., Sun, H., & Zhu, J. (2023). Nonlinear Impact-Echo Test for Quantitative Evaluation of ASR Damage in Concrete. Journal of Nondestructive Evaluation, 42(4), 93. doi:10.1007/s10921-023-01003-2.
[24] Pandum, J., Hashimoto, K., Sugiyama, T., & Yodsudjai, W. (2024). Impact-Echo for Crack Detection in Concrete with Artificial Intelligence based on Supervised Deep Learning. E-Journal of Nondestructive Testing, 29(6), 1-8. doi:10.58286/29925.
[25] ASTM C1383-15(2022). (2024). Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method. ASTM International, Pennsylvania, United States. doi:10.1520/C1383-15R22
[26] Love, A. E. H. (1944). A treatise on the mathematical theory of elasticity. Courier Corporation, Chelmsford, United States.
[27] Dethof, F., & Keßler, S. (2024). Explaining impact echo geometry effects using modal analysis theory and numerical simulations. NDT and E International, 143. doi:10.1016/j.ndteint.2023.103035.
[28] Yao, F., Zhuang, J., & Abulikemu, A. (2022). Shape coefficient of impact-echo for small-size short cylinder/circular tube structures. Materialpruefung/Materials Testing, 64(4), 574–583. doi:10.1515/mt-2021-2043.
[29] Siorikis, V. G., Pelekis, P., Antonopoulos, C. P., & Hatzigeorgiou, G. D. (2022). Shape correction factors for impact-echo method on short cylinders: A numerical and experimental study. Proceedings of the 13th HSTAM International Congress on Mechanics. Hellenic Society for Theoretical and Applied Mechanics (HSTAM), Patras, Greece.
[30] Wang, J. J., Chang, T. P., Chen, B. T., & Wang, H. (2012). Determination of Poissons ratio of solid circular rods by impact-echo method. Journal of Sound and Vibration, 331(5), 1059–1067. doi:10.1016/j.jsv.2011.10.030.
[31] Siorikis, V. G., Antonopoulos, C. P., Hatzigeorgiou, G. D., & Pelekis, P. (2024). Comparative Study of UPV and IE Results on Concrete Cores from Existing Structures. Civil Engineering Journal, 10(9), 2804–2819. doi:10.28991/cej-2024-010-09-03.
[32] Mavko, G., Mukerji, T., & Dvorkin, J. (2020). The rock physics handbook. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9781108333016.
[33] BS 1881-203:1986. (1986). The Standard for Testing concrete - Recommendations for measurement of velocity of ultrasonic pulses in concrete. British Standard Institute (BSI), London, United Kingdom.
[34] Pelekis, P., Siorikis, V. G., Antonopoulos, C. P., & Hatzigeorgiou, G. D. (2022). Determination of dynamic elastic properties on short cylinders using impact-echo method: A numerical study. Proceedings of the 13th HSTAM International Congress on Mechanics, Hellenic Society for Theoretical and Applied Mechanics (HSTAM), Patras, Greece.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














