Leaching-Permeability Behavior of Collapsible Gypseous Soils Treated with Nano-Titanium Dioxide
Downloads
As a result of the limited studies that have been conducted on the utilization of nano titanium dioxide as a nanomaterial for stabilizing gypseous soils in geotechnical works, this study is directed to predict the changes in the coefficient of permeability k, the leaching strain, the total dissolved salts TDS, and the pH values with the changes in the percentages of nano titanium dioxide NTD. The gypseous soil samples were obtained from three sites located north of Baghdad, the capital of Iraq, with different gypsum contents of about 34%, 50%, and 60%. Tests have identified the mechanical and physical characteristics of the studied gypseous soils. In addition, oedometer permeability leaching tests were conducted using an oedometer cell apparatus. The results of the tested gypseous soils presented a significant effect of NTD on reducing the coefficient of permeability k and cost-effectively, especially at 0.3 and 0.5% for the three tested soils. For S1 tested soil, the reduction percentages of the k values were 79.02% and 80.0% when treated with 0.3% and 0.5% of NTD, respectively. While for S2 tested gypseous soil, the reduction percentages were 75.9% and 79.1%, and 66.04% and 73.6% for S3 tested gypseous soil when treated with 0.3% and 0.5% of NTD, respectively. The treated gypseous soils are exposed to less gypsum dissolution, as the NTD material forms an impermeable layer to prevent direct contact between water and gypsum. This reduces gypsum dissolution and, thus, reduces leaching strain. For S1 tested soil, the percentage of reduction of the leaching strain was 90.5%, while for S2 and S3 tested soils, it was 91.2% and 89.9%, respectively, when 0.3% of NTD was applied. As the percentage of the NTD increased for S1, S2, and S3, the pH values decreased due to decreased TDS in the leached water, and it is clear that 0.3% of NTD gives a reliable pH value for the three tested soils. Considering these results, it appears that even small amounts of nano titanium dioxide have the potential to be an effective agent for reducing permeability and stabilizing collapsible gypseous soils in civil engineering projects, compared with other nano or traditional materials.
Downloads
[1] Tomlinson, M. J., & Boorman, R. (2001). Foundation design and construction. Pearson education, London, United Kingdom.
[2] Zhang, S., Yang, X., Xie, S., & Yin, P. (2020). Experimental study on improving the engineering properties of coarse grain sulphate saline soils with inorganic materials. Cold Regions Science and Technology, 170, 102909. doi:10.1016/j.coldregions.2019.102909.
[3] Al-Obaydi, Q. A. J. (2003). Studies in geotechnical and collapsible characteristics of gypseous soil. Master Thesis, Civil Engineering Department. College of Engineering. Al-Mustansyria University, Baghdad, Iraq.
[4] Y. Fattah, M., & J. al-Shakarchi, Y. (2008). Long-Term Deformation of Some Gypseous Soils. Engineering and Technology Journal, 26(12), 1461–1483. doi:10.30684/etj.26.12.3.
[5] Najah, A., El-Shafie, A., Karim, O. A., & El-Shafie, A. H. (2012). Application of artificial neural networks for water quality prediction. Neural Computing and Applications, 22(S1), 187–201. doi:10.1007/s00521-012-0940-3.
[6] Abdalhusein, M., Akhtarpour, A., & Mahmood, M. (2022). Unsaturated behaviour of gypseous sand soils using a modified triaxial test apparatus. International Journal of Geotechnical Engineering, 16(6), 743–758. doi:10.1080/19386362.2022.2033483.
[7] Cornelius, K. (1985). Manual of mineralogy. John Wiley & Sons, Hoboken, United States.
[8] Hesse, P. R. (1974). Methods of soil analysis—Texture analysis of gypsic soils. The Euphrates pilot irrigation project. FAO AGON/SF/SYR/67/522, Food and Agriculture Organization (FAO), Rome, Italy.
[9] Kuttah, D., & Sato, K. (2015). Review on the effect of gypsum content on soil behavior. Transportation Geotechnics, 4, 28–37. doi:10.1016/j.trgeo.2015.06.003.
[10] Nashat, I. H. (1990). Engineering characteristics of some gypseous soils in Iraq. PhD Thesis, University of Baghdad, Baghdad, Iraq.
[11] Al-Mufty, A. A. (1997). Effect of gypsum dissolution on the mechanical behaviour of gypseous soils. Ph.D. Thesis, University of Baghdad, Baghdad, Iraq.
[12] Obead, I. H., Fattah, M. Y., & Omran, H. A. (2023). Role of Soluble Materials on the Hydro-mechanical Properties of Collapsible Gypseous Soil. Transportation Infrastructure Geotechnology, 10(6), 1126–1144. doi:10.1007/s40515-022-00257-z.
[13] Al-Yasir, A. T., & Al-Taie, A. J. (2022). Geotechnical Review for Gypseous Soils: Properties and Stabilization. Jurnal Kejuruteraan, 34(5), 785–799. doi:10.17576/jkukm-2022-34(5)-04.
[14] N J Alzaidy, M. (2020). Effect of gypsum content on unsaturated engineering properties of clayey soil. International Journal of Engineering & Technology, 9(1), 84–91. doi:10.14419/ijet.v9i1.30139.
[15] Al-Zabedy, S., & Al-Kifae, A. (2020). Controlling collapsibility potential by improving Iraqi gypseous soils subsidence: A Review study. IOP Conference Series: Materials Science and Engineering, 745(1), 1–15. doi:10.1088/1757-899X/745/1/012107.
[16] Al-Gharbawi, A. S. A., Fattah, M. Y., & Mahmood, M. R. (2022). Effect of Magnesium Oxide and Carbonation on Collapse Potential of Collapsible Gypseous Soil. International Journal of GEOMATE, 22(92), 48–55. doi:10.21660/2022.92.1951.
[17] Dudley, J. H. (1970). Review of Collapsing Soils. Journal of the Soil Mechanics and Foundations Division, 96(3), 925–947. doi:10.1061/jsfeaq.0001426.
[18] Clemence, S. P., & Finbarr, A. O. (1981). Design Considerations for Collapsible Soils. Journal of the Geotechnical Engineering Division, 107(3), 305–317. doi:10.1061/ajgeb6.0001102.
[19] Kavandi, P., Firoozfar, A., & Hemmati, M. A. (2016). Bearing Capacity Assessment of Collapsible Soils Improved by Deep Soil Mixing Using Finite Element Method. Open Journal of Geology, 6(9), 1055–1068. doi:10.4236/ojg.2016.69079.
[20] Al-naje, F. Q., Abed, A. H., & Al-Taie, A. J. (2020). A Review of Sustainable Materials to Improve Geotechnical Properties of Soils. Al-Nahrain Journal for Engineering Sciences, 23(3), 289–305. doi:10.29194/njes.23030289.
[21] Mohsen, A., & Albusoda, B. S. (2022). The Collapsible Soil, Types, Mechanism, and identification: A Review Study. Journal of Engineering, 28(5), 41–60. doi:10.31026/j.eng.2022.05.04.
[22] Al-Mufty, A. A., & Nashat, I. H. (2000). Gypsum content determination in gypseous soils and rocks. 3rd International Jordanian Conference on Mining, 2, 485–492. 25-28 April, 2000, Amman, Jordan.
[23] Mohammed, D. W., A. Ahmed, B., & Th. AL-Hadidi, M. (2019). Improving Gypseous Soil Properties by Using Non-Traditional Additives. Al-Qadisiyah Journal for Engineering Sciences, 12, 207–213. doi:10.30772/qjes.v12i4.637.
[24] Al-Zory, E. A. (1993). The effect of leaching on lime stabilized gypseous soil. Master Thesis, University of Mosul, Mosul, Iraq.
[25] Al-Busoda, B. (1999). Studies on the behavior of gypseous soil and its treatment during loading. Master Thesis, University of Baghdad, Baghdad, Iraq.
[26] Namiq, L. I., & Nashat, I. H. (2011). Influence of Leaching on Volume Change of a Gypseous Soil. Advances in Geotechnical Engineering, C, 2611–2620. doi:10.1061/41165(397)267.
[27] Ahmad, F., Said, M. A., & Najah, L. (2012). Effect of leaching and gypsum content on properties of gypseous soil. International Journal of Scientific and Research Publications, 2(9), 1-5.
[28] Sulaiman, H. S., Al-Sharrad, M. A., & Abed, I. A. (2024). Biocalcification of Sandy Gypseous Soil by Bacillus Pasteurii. Salud, Ciencia y Tecnología - Serie de Conferencias, 3, 818. doi:10.56294/sctconf2024818.
[29] Al-Obaidi, A. A. H., & Al-Mafragei, I. H. S. (2016). Settlement and Collapse of Gypseous Soils. Tikrit Journal of Engineering Sciences, 23(1), 20–31. doi:10.25130/tjes.23.1.03.
[30] Mawla Al-Badran, Y., Abd Al-Azal Al-Mufty, A., & Hamed Nashat, I. (2018). Leaching Behavior of Gypseous Soils. Journal of Engineering and Sustainable Development, 22(02), 119–126. doi:10.31272/jeasd.2018.2.73.
[31] Al-Sharrad, M. A. (2023). Collapsibility and leaching behavior of an artificial sandy gypseous soil. Bulletin of Engineering Geology and the Environment, 82(12). doi:10.1007/s10064-023-03465-0.
[32] Karumanchi, M., Avula, G., Pangi, R., & Sirigiri, S. (2020). Improvement of consistency limits, specific gravities, and permeability characteristics of soft soil with nanomaterial: Nanoclay. Materials Today: Proceedings, 33, 232–238. doi:10.1016/j.matpr.2020.03.832.
[33] Majeed, Dr. Z. H., Aubais, Eng. K. J., & Taha, Dr. M. R. (2020). Using Nanomaterials in Stabilization of Soil for Oil Infrastructures. Journal of Petroleum Research and Studies, 10(3), 36–53. doi:10.52716/jprs.v10i3.329.
[34] Vijayan, L. V., & Jose, J. P. A. (2022). Stability studies of cohesive soil with nano magnesium and zinc oxide. Materials and Technology, 56(2), 187-191. doi:10.17222/mit.2021.329
[35] Albusoda, B. S., & Khdeir, R. A. (2018). Mitigation of collapse of gypseous soil by nano-materials. International Journal of Science and Research (IJSR), 7(2), 1041-1047.
[36] Hayal, A. L., Al-Gharrawi, A. M. B., & Fattah, M. Y. (2020). Collapse problem treatment of gypseous soil by nanomaterials. International Journal of Engineering, 33(9), 1737-1742. doi:10.5829/IJE.2020.33.09C.06.
[37] Hassan, M. M., Dylla, H., Mohammad, L. N., & Rupnow, T. (2010). Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Construction and Building Materials, 24(8), 1456–1461. doi:10.1016/j.conbuildmat.2010.01.009.
[38] Ma, B., Li, H., Mei, J., Li, X., & Chen, F. (2015). Effects of Nano-TiO2on the Toughness and Durability of Cement-Based Material. Advances in Materials Science and Engineering, 2015, 1–10. doi:10.1155/2015/583106.
[39] Babaei, A., Ghazavi, M., & Ganjian, N. (2022). Shear Strength Parameters of Clayey Sand Treated with Cement and Nano Titanium Dioxide. Geotechnical and Geological Engineering, 40(1), 133–151. doi:10.1007/s10706-021-01881-1.
[40] Jili, Q., Yawen, Z., Weiqing, Q., Xiaoshun, Z., Lingqing, H., & Jinrui, C. (2021). Nano titanium oxide for modifying water physical property and acid-resistance of alluvial soil in Yangtze River estuary. Science and Engineering of Composite Materials, 28(1), 169–179. doi:10.1515/secm-2021-0016.
[41] Hsu, C. Y., Mahmoud, Z. H., Abdullaev, S., Ali, F. K., Ali Naeem, Y., Mzahim Mizher, R., Morad Karim, M., Abdulwahid, A. S., Ahmadi, Z., Habibzadeh, S., & kianfar, E. (2024). Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications. Case Studies in Chemical and Environmental Engineering, 9. doi:10.1016/j.cscee.2024.100626.
[42] Verma, D. K. (2018). Assessment of Addition of Nano Titanium Dioxide on Geotechnical Properties of Clayey Soil. International Journal for Research in Applied Science and Engineering Technology, 6(1), 1703-1706. doi:10.22214/ijraset.2018.1260.
[43] Joshaghani, A., Balapour, M., Mashhadian, M., & Ozbakkaloglu, T. (2020). Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study. Construction and Building Materials, 245. doi:10.1016/j.conbuildmat.2020.118444.
[44] ASTM D854-23. (2023). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-23.
[45] Al-Obaidi, Q. A. (2014). Hydro-Mechanical Behaviour of Collapsible Soils, Ph.D. Thesis, Ruhr University at Bochum, Bochum, Germany.
[46] Abdolvand, Y., & Sadeghiamirshahidi, M. (2024). Soil stabilization with gypsum: A review. Journal of Rock Mechanics and Geotechnical Engineering, 16(12), 5278-5296. doi:10.1016/j.jrmge.2024.02.007.
[47] ASTM D422-63(2007). (2014). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D0422-63R07.
[48] ASTM D2487-11. (2018). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System. ASTM International, Pennsylvania, United States. doi:10.1520/D2487-11.
[49] ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[50] ASTM D5550-14. (2014). Standard test: method for specific gravity of soil solids by helium gas pycnometer ASTM International, Pennsylvania, United States.
[51] Bowles, J. (1992). Engineering Properties of Soil and Their Measurements. 4th Edition, McGraw-Hill, New York, United States.
[52] ASTM D2216-19. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D2216-19.
[53] BS 1377: 1990. (1990). Methods of Test for Soils for Civil Engineering Purposes. British Standard Institute (BSI), London, United Kingdom.
[54] Fattah, M. Y., Al-Shakarchi, Y. J., & Al-Numani, H. N. (2022). Effect of Time History on Long-Term Deformation of Gypseous Soils. Studia Geotechnica et Mechanica, 44(3), 198–210. doi:10.2478/sgem-2022-0011.
[55] Al-Riahi, S. M. H., Pauzi, N. I. M., Fattah, M. Y., & Abbas, H. A. (2025). Assessment of geotechnical behavior of gypseous soil under leaching effect using machine learning. Franklin Open, 11. doi:10.1016/j.fraope.2025.100297.
[56] Snodi, L. N. (2015). Improvement of Tikrit Gypseous Soil Using Soil Replacement and Additives, Ph.D. Thesis, University Sains Malaysia, George Town, Malaysia.
[57] Al-Gharbawi, A. S. (2022). Collapse Behavior of Carbonated Collapsible Gypseous Soil Admixtured with Reactive Products, Ph.D. Thesis, University of Technology, Iraq, Baghdad, Iraq.
[58] Ali, S. D., & Karkush, M. (2024). Effects of nano-clay on the geotechnical properties of gypseous soil. IOP Conference Series: Earth and Environmental Science, 1374(1), 012006. doi:10.1088/1755-1315/1374/1/012006.
[59] Emad, R., & Salman, A. D. (2024). Shear Strength and Collapsibility of Gypseous Soil Improved by Nanomaterials. IOP Conference Series: Earth and Environmental Science, 1374(1), 012004. doi:10.1088/1755-1315/1374/1/012004.
[60] Hussein, A. H., Muhauwiss, F. M., & Abdul-Jabbar, R. A. (2023). Collapsibility of Gypseous Soil Treated with Pectin-Biopolymer through Leaching. Journal of Engineering, 2023, 1–11. doi:10.1155/2023/6379835.
[61] Hassan Al-Riahi, S. M., Irfah Mohd Pauzi, N., Fattah, M. Y., & Ali Abbas, H. (2024). Leaching-induced alterations in the geotechnical and microstructural attributes of clayey gypseous soils. Ain Shams Engineering Journal, 15(7), 102865. doi:10.1016/j.asej.2024.102865.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














