Structural and Soil Deformations in Non-Invert and Circular Tunnels: A Centrifuge and Numerical Analysis
Downloads
Non-invert tunnels are often chosen to reduce initial construction costs compared to circular tunnels, but they frequently require expensive maintenance. Despite their widespread use, limited research has quantified the differences in material requirements (steel and concrete) between these two designs. This study compares the internal forces and material demands of circular and non-invert tunnels using centrifuge model tests and numerical analysis. A combined approach using 40g centrifuge testing and parametric analysis in OPTUM G2 assesses bending moments, lining shear forces, and shear stress distributions. Three tunnel diameters (9 m, 12 m, and 16 m) are analyzed across depth ratios (H/D = 10, 7, 5, and 1), covering eight reinforced concrete lining designs. Results show that circular tunnels have more uniform stress distributions in the lining and surrounding soil, leading to lower bending moments and shear forces. In contrast, non-invert tunnels exhibit stress concentrations near the lower fulcrum corners and spring line. Due to their uniform stress distribution, circular tunnels become more material-efficient than non-invert at greater depths and larger diameters, reducing steel use by up to 36% despite requiring up to 19% more concrete. Non-invert tunnels, however, use less material at shallow depths, saving up to 14% in steel and 23% in concrete.
Downloads
[1] Komatani, D., Yokoo, K., & Akagi, W. (2018). Effect of rock bolt construction under tunnel roadbed on suppressing road surface upheaval. Proceedings of Annual Conference of the Japan Society of Civil Engineers, VI-062, 123-124.
[2] Xu, S., Ma, E., Lai, J., Yang, Y., Liu, H., Yang, C., & Hu, Q. (2022). Diseases failures characteristics and countermeasures of expressway tunnel of water-rich strata: A case study. Engineering Failure Analysis, 134, 106056. doi:10.1016/j.engfailanal.2022.106056.
[3] Du, M., Wang, X., Zhang, Y., Li, L., & Zhang, P. (2020). In-situ monitoring and analysis of tunnel floor heave process. Engineering Failure Analysis, 109, 104323. doi:10.1016/j.engfailanal.2019.104323.
[4] Zan, W., Liu, L., Lai, J., Wang, E., Zhou, Y., & Yang, Q. (2023). Deformation failure characteristics of weathered phyllite tunnel and variable-stiffness support countermeasures: A case study. Engineering Failure Analysis, 153, 107553. doi:10.1016/j.engfailanal.2023.107553.
[5] Isago, N., Kawata, K., Kusaka, A., & Ishimura, T. (2015). Long-term deformation of mountain tunnel lining and ground under swelling rock condition. Geomechanik Und Tunnelbau, 8(5), 380–386. doi:10.1002/geot.201500024.
[6] Li, C., & Wu, Y. (2025). Analysis and control of the causes of the uplift of the invert of deep tunnels. Discover Applied Sciences, 7(1), 11. doi:10.1007/s42452-024-06424-w.
[7] Fan, R., Chen, T., Yin, X., Wang, G., Li, M., & Wang, S. (2024). Analysis of Mechanical Properties of Steep Surrounding Rock and Failure Process with Countermeasures for Tunnel Bottom Structures. Applied Sciences (Switzerland), 14(18), 8341. doi:10.3390/app14188341.
[8] Asakura, T., & Kojima, Y. (2003). Tunnel maintenance in Japan. Tunnelling and Underground Space Technology, 18(2–3), 161–169. doi:10.1016/S0886-7798(03)00024-5.
[9] Huang, C., Li, S., Li, G., Yao, T., & Wu, X. (2024). Reform of deformation control technology for railway tunnels with squeezing surrounding rock: case study of the new and existing Wushaoling tunnels in China. Frontiers in Earth Science, 12. doi:10.3389/feart.2024.1438425.
[10] Li, T. (2012). Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction. Bulletin of Engineering Geology and the Environment, 71(2), 297–308. doi:10.1007/s10064-011-0367-6.
[11] Yashiro, K., Shimamoto, K., & Kojima, Y. (2011). Guidelines for Selection of Appropriate Seismic Countermeasures for Existing Mountain Tunnels in Poor Geological Conditions. Quarterly Report of RTRI, 52(4), 210–216. doi:10.2219/rtriqr.52.210.
[12] Lu, C.-C., & Hwang, J.-H. (2008). Damage of New Sanyi Railway Tunnel during the 1999 Chi-Chi Earthquake. In Geotechnical Earthquake Engineering and Soil Dynamics IV, 1–10. doi:10.1061/40975(318)207.
[13] Mothersille, D., & Littlejohn, S. (2012). Grouting of Anchors to Resist Hydrostatic Uplift at Burnley Tunnel, Melbourne, Australia. Grouting and Deep Mixing, 1073–1084. doi:10.1061/9780784412350.0088.
[14] Zheng, X., Huang, F., Wang, S., & Xu, W. (2024). Research on the Mechanism of Loose Deformation in Weak Fracture Zone Tunnel Surrounding Rock and Support Control. Buildings, 14(8), 2506. doi:10.3390/buildings14082506.
[15] Saraswat, S., & Maheshwari, B. K. (2024). Seismic Behaviour of Tunnels of Different Shapes in Rocks. Japanese Geotechnical Society Special Publication, 10(20), 730–735. doi:10.3208/jgssp.v10.os-9-05.
[16] Ng, C. W. W., Wang, R., & Boonyarak, T. (2016). A comparative study of the different responses of circular and horseshoe-shaped tunnels to an advancing tunnel underneath. Geotechnique Letters, 6(2), 168–175. doi:10.1680/jgele.16.00001.
[17] Ma, K., Li, W., Li, J., Wang, H., Zheng, J., & Zhang, J. (2020). Research on the Mechanism and Treatment Technique of Invert Floor Heave after the Penetration of Large Cross-section Tunnel in Slight Inclined Stratum. IOP Conference Series: Earth and Environmental Science, 570(5), 52031. doi:10.1088/1755-1315/570/5/052031.
[18] Dang, V. K., Do, N. A., & Dinh, V. D. (2022). Estimating the Radial Displacement on the Tunnel Boundary by Rock Mass Classification Systems. International Journal of GEOMATE, 22(92), 9–15. doi:10.21660/2022.92.19.
[19] Lopez Ochoa, J. (2024). Modelling long-term deterioration of lining in tunnels. Ph.D. Thesis, Politecnico di Torino, Turin, Italy.
[20] Farhadian, H., & Gholami, Z. (2024). Hydraulic Response to Geometry: Finite Element Modeling of Underground Spaces in Saturated Environments. Journal of Hydraulic Structures, 10(1), 66–79.
[21] Han, Z., Liu, K., Ma, J., & Li, D. (2024). Numerical simulation on the dynamic mechanical response and fracture mechanism of rocks containing a single hole. International Journal of Coal Science and Technology, 11(1), 64. doi:10.1007/s40789-024-00718-5.
[22] Nie, F., Zhang, X., Zhou, L., Wang, H., Hua, J., Liu, B., & Feng, B. (2025). Investigation of Fracture Characteristics and Energy Evolution Laws of Model Tunnels with Different Shapes Subjected to Impact Load. Materials, 18(4), 889. doi:10.3390/ma18040889.
[23] Ma, X., Tang, G., Ma, C., & Zhang, H. (2025). Seismic response of cross-passages between parallel tunnels with varied connection rigidities in centrifuge model tests. Soil Dynamics and Earthquake Engineering, 194, 109385. doi:10.1016/j.soildyn.2025.109385.
[24] Weng, X., Dang, B., Li, X., Ye, F., & Ma, Y. (2025). Study on the instability mode of a tunnel face under variable seepage conditions in sandy soil shield tunnels: Centrifuge tests and numerical simulation. Tunnelling and Underground Space Technology, 159, 106515. doi:10.1016/j.tust.2025.106515.
[25] Zhang, J., Wang, A., & Chen, X. (2025). Deformation and strain mechanisms of an existing tunnel subject to failure of a new tunnel. International Journal of Geotechnical Engineering, 19(4), 147–57. doi:10.1080/19386362.2025.2471771.
[26] Shibayama, S., Izawa, J., Takahashi, A., Takemura, J., & Kusakabe, O. (2010). Observed behaviour of a tunnel in sand subjected to shear deformation in a centrifuge. Soils and Foundations, 50(2), 281–294. doi:10.3208/sandf.50.281.
[27] Behnen, G., Nevrly, T., & Fischer, O. (2015). Soil-structure interaction in tunnel lining analyses. Geotechnik, 38(2), 96–106. doi:10.1002/gete.201400010.
[28] Ueno, K. (1998). Methods for preparation of sand samples. Proceedings of the International Conference Centrifuge, 23-25 September, 1998, Tokyo, Japan.
[29] OPTUM G2 (2023). Optum G2 – 2D Geotechnical Design & analysis Software. Optum Computational Engineering, Newcastle, New South Wales, Australia. Available online: www.optumce.com (accessed on May 2025).
[30] Eslon Plant. (2025). UPVC Pipes. Eslon Plant, Osaka, Japan. Available online: www.eslon-plant.jp (accessed on May 2025). (In Japanese).
[31] Cai, M., Kaiser, P. K., Tasaka, Y., Maejima, T., Morioka, H., & Minami, M. (2004). Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences, 41(5), 833–847. doi:10.1016/j.ijrmms.2004.02.001.
[32] Wu, H., Zhao, G., & Ma, S. (2022). Failure behavior of horseshoe-shaped tunnel in hard rock under high stress: Phenomenon and mechanisms. Transactions of Nonferrous Metals Society of China, 32(2), 639–656. doi:10.1016/s1003-6326(22)65822-9.
[33] Liu, S., Shi, Y., Sun, R., & Yang, J. (2020). Damage behavior and maintenance design of tunnel lining based on numerical evaluation. Engineering Failure Analysis, 109, 104209. doi:10.1016/j.engfailanal.2019.104209.
[34] Penzien, J., & Wu, C. L. (1998). Stresses in linings of bored tunnels. Earthquake Engineering and Structural Dynamics, 27(3), 283–300. doi:10.1002/(SICI)1096-9845(199803)27:3<283::AID-EQE732>3.0.CO;2-T.
[35] Zeng, X. T., Wang, S. J., & Lv, Z. T. (2024). Stress solution for an arbitrarily shaped tunnel with a neighboring circular cavity. Mathematics and Mechanics of Solids, 29(1), 83–98. doi:10.1177/10812865231187853.
[36] Luo, Y., Chen, J., Chen, Y., Diao, P., & Qiao, X. (2018). Longitudinal deformation profile of a tunnel in weak rock mass by using the back analysis method. Tunnelling and Underground Space Technology, 71, 478–493. doi:10.1016/j.tust.2017.10.003.
[37] Hoek, E. (1998). Tunnel support in weak rock. Keynote address, symposium of sedimentary rock engineering, 20-22 November, 1998, Taipei, Taiwan.
[38] Tang, S. B., & Tang, C. A. (2012). Numerical studies on tunnel floor heave in swelling ground under humid conditions. International Journal of Rock Mechanics and Mining Sciences, 55, 139–150. doi:10.1016/j.ijrmms.2012.07.007.
[39] Gokceoglu, C., Aygar, E. B., Nefeslioglu, H. A., Karahan, S., & Gullu, S. (2022). A Geotechnical Perspective on a Complex Geological Environment in a High-Speed Railway Tunnel Excavation (A Case Study from Türkiye). Infrastructures, 7(11), 155. doi:10.3390/infrastructures7110155.
[40] Barla, M. (1999). Tunnels in swelling ground: simulation of 3D stress paths by triaxial laboratory testing. Ph.D. Thesis, Università degli Studi di Genova, Genoa, Italy.
[41] Cao, C., Shi, C., Lei, M., Peng, L., & Bai, R. (2018). Deformation Characteristics and Countermeasures of shallow and Large-span Tunnel Under-crossing the Existing Highway in Soft Soil: a Case Study. KSCE Journal of Civil Engineering, 22(8), 3170–3181. doi:10.1007/s12205-017-1586-6.
[42] ACI 318-19. (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute (ACI), Farmington Hills, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.