Effect of Cu and SiO₂ on a Remelted-Recycled Piston Alloy Under Vertical Centrifugal Casting Conditions
Downloads
Functionally graded aluminum matrices produced by means of centrifugal casting offer a route to location-specific properties, yet sustainable feedstocks and dual-density reinforcements are less well explored. In this work, we evaluate vertical centrifugal casting (VCC) of a remelted, recycled piston alloy reinforced with silica (SiO₂) and copper (Cu) particulates selected for their contrasting densities relative to the matrix. Castings were produced at 1000 rpm for 5 minutes using a 500 °C preheated mold and an 800 °C pour temperature. Cu was added at 1–4 wt.% and SiO₂ was added at 0–9 wt.%. Bulk density/porosity measurements, Vickers hardness testing, and optical/SEM microstructural analysis were employed to characterize the resulting gradients. The density increased with the radial distance from the rotation axis, accompanied by a monotonic decrease in porosity, consistent with centrifugal separation. Microstructurally, SiO₂ concentrated toward the inner region near the rotation center; in comparison, Cu was enriched at the outer periphery. Correspondingly, hardness exhibited a spatial gradient: SiO₂-reinforced zones were hardest near the inner region, whereas Cu-rich outer zones were hardest at the external rim. These results demonstrate that VCC of a recycled Al–Si feedstock can be used to reliably tailor its microstructure and properties through density-driven particle segregation, enabling controllable, bidirectional functional grading using environmentally friendly starting materials.
Downloads
[1] Jia, L., Xu, D., Li, M., Guo, J., & Fu, H. (2012). Casting defects of Ti-6Al-4V alloy in vertical centrifugal casting processes with graphite molds. Metals and Materials International, 18(1), 55-61. doi:10.1007/s12540-012-0007-0.
[2] Ping, W. S., Rong, L. D., Jie, G. J., Yun, L. C., Qing, S. Y., & Zhi, F. H. (2006). Numerical simulation of microstructure evolution of Ti-6Al-4V alloy in vertical centrifugal casting. Materials Science and Engineering: A, 426(1–2), 240–249. doi:10.1016/j.msea.2006.04.014.
[3] Chirita, G., Soares, D., & Silva, F. S. (2008). Advantages of the centrifugal casting technique for the production of structural components with Al-Si alloys. Materials and Design, 29(1), 20–27. doi:10.1016/j.matdes.2006.12.011.
[4] Ali, S. M. (2019). The effect of reinforced SiC on the mechanical properties of the fabricated hypoeutectic Al-Si alloy by centrifugal casting. Engineering Science and Technology, an International Journal, 22(4), 1125–1135. doi:10.1016/j.jestch.2019.02.009.
[5] Madhusudhan, Narendranath, S., Kumar, G. C. M., & Mukunda, P. G. (2010). Experimental study on rate of solidification of centrifugal casting. International Journal of Mechanical and Materials Engineering, 5(1), 101–105.
[6] Shailesh, P., Praveen Kumar, B., Sundarrajan, S., & Komariahia, M. (2012). Experimental investigation on centrifugal casting of 5500 alloy: A Taguchi approach. Scientific Research and Essays, 7(44), 3797–3808.
[7] Jamian, S., Ayob, S. N., Abidin, M. R. Z., & Muhd Nor, N. H. (2016). Fabrication of functionally graded natural fibre/epoxy cylinder using centrifugal casting method. ARPN Journal of Engineering and Applied Sciences, 11(4), 2327–2331.
[8] Prasad, K. S. K., Murali, M. S., & Mukunda, P. G. (2010). Analysis of fluid flow in centrifugal casting. Signal, Image and Video Processing, 4(1), 103–110. doi:10.1007/s11706-010-0005-4.
[9] Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied Materials Today, 5, 223–245. doi:10.1016/j.apmt.2016.10.001.
[10] Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y., Bilotti, E., Essa, K., Zhang, H., Li, Z., Yan, F., & Peijs, T. (2020). A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi-Scale Design to Versatile Functional Properties. Advanced Materials Technologies, 5(6), 1900981. doi:10.1002/admt.201900981.
[11] Ma, Z., Liu, W., Li, W., Liu, H., Song, J., Liu, Y., Huang, Y., Xia, Y., Wang, Z., Liu, B., Lv, Z., Hu, G., Wang, T., Li, T., Liu, S., & Zhang, Y. (2024). Additive manufacturing of functional gradient materials: A review of research progress and challenges. Journal of Alloys and Compounds, 971, 170768. doi:10.1016/j.jallcom.2023.172642.
[12] Shan, Z., Tran, M. T., Woo, W., Hwang, S. K., Wang, H., Luzin, V., Kingston, E. J., Hill, M. R., DeWald, A., & Kim, D. K. (2023). Multiscale framework for prediction of residual stress in additively manufactured functionally graded material. Additive Manufacturing, 61, 103378. doi:10.1016/j.addma.2022.103378.
[13] Pradeep, A. D., & Rameshkumar, T. (2021). Review on centrifugal casting of functionally graded materials. Materials Today: Proceedings, 45, 729–734. doi:10.1016/j.matpr.2020.02.764.
[14] Watanabe, Y., Inaguma, Y., Sato, H., & Miura-Fujiwara, E. (2009). A novel fabrication method for functionally graded materials under centrifugal force: The centrifugal mixed-powder method. Materials, 2(4), 2510–2525. doi:10.3390/ma2042510.
[15] Kumar, N., & Panigrahi, S. K. (2025). A casting strategy to develop high-performance Al-Si cast alloy. Manufacturing Letters, 44, 1731-1738. doi:10.1016/j.mfglet.2025.06.192.
[16] Radhika, N., & Raghu, R. (2016). Development of functionally graded aluminium composites using centrifugal casting and influence of reinforcements on mechanical and wear properties. Transactions of Nonferrous Metals Society of China, 26(4), 905–916. doi:10.1016/S1003-6326(16)64185-7.
[17] El-Galy, I. M., Ahmed, M. H., & Bassiouny, B. I. (2017). Characterization of functionally graded Al-SiCp metal matrix composites manufactured by centrifugal casting. Alexandria Engineering Journal, 56(4), 371–381. doi:10.1016/j.aej.2017.03.009.
[18] Verma, R. K., Parganiha, D., & Chopkar, M. (2021). A review on fabrication and characteristics of functionally graded aluminum matrix composites fabricated by centrifugal casting method. SN Applied Sciences, 3(2), 227. doi:10.1007/s42452-021-04200-8.
[19] Milosan, I., Bedő, T., Gabor, C., Munteanu, D., Pop, M. A., Catana, D., Cosnita, M., & Varga, B. (2021). Characterization of Aluminum Alloy–Silicon Carbide Functionally Graded Materials Developed by Centrifugal Casting Process. Applied Sciences, 11(4), 1625. doi:10.3390/app11041625.
[20] Mohapatra, S., Sarangi, H., & Mohanty, U. K. (2020). Effect of processing factors on the characteristics of centrifugal casting. Manufacturing Review, 7, 26. doi:10.1051/mfreview/2020024.
[21] Mazloum, K., Al Njjar, A., & Sata, A. (2024). Exploring the Filling Related Defect in Vertical Centrifugal Castings for A413 and A356 Using 3D Transient Simulation. Recent Patents on Mechanical Engineering, 18(4), 410–419. doi:10.2174/0122127976320259240626094431.
[22] Shen, X., Yin, Y., Xiao, G., Ji, X., & Zhou, J. (2019). Physical simulation of fluid frontal motion morphology in filling process of titanium alloy vertical centrifugal casting. Procedia Manufacturing, 37, 51–58. doi:10.1016/j.promfg.2019.12.011.
[23] Ling, Y., Zhou, J., Nan, H., Zhu, L., & Yin, Y. (2018). A shrinkage cavity model based on pressure distribution for Ti-6Al–4V vertical centrifugal castings. Journal of Materials Processing Technology, 251, 295–304. doi:10.1016/j.jmatprotec.2017.08.025.
[24] Liao, M., Zhang, C., Liu, G., & Wang, Z. (2025). Microstructural evolution and superplasticity of IN718 superalloy rings via vacuum centrifugal casting, thermo-mechanical controlled ring rolling and standard heat treatment. Materials Science and Engineering: A, 947, 149275. doi:10.1016/j.msea.2025.149275.
[25] Changyun, L., Haiyan, W., Shiping, W., Lei, X., Kuangfei, W., & Hengzhi, F. (2010). Research on Mould Filling and Solidification of Titanium Alloy in Vertical Centrifugal Casting. Rare Metal Materials and Engineering, 39(3), 388–392. doi:10.1016/s1875-5372(10)60085-9.
[26] Changyun, L., Shiping, W., Jingjie, G., Yanqing, S., Weisheng, B., & Hengzhi, F. (2006). Model experiment of mold filling process in vertical centrifugal casting. Journal of Materials Processing Technology, 176(1–3), 268–272. doi:10.1016/j.jmatprotec.2006.04.004.
[27] ASTM E10-18. (2023). ASTM E10 Standard Test Method for Brinell Hardness of Metallic Materials -- eLearning Courses-ES. ASTM Standard, Pennsylvania, United States. doi:10.1520/E0010-18.
[28] ASTM E407-07(2015)e1. (2023). Standard Practice for Microetching Metals and Alloys. ASTM Standard, Pennsylvania, United States. doi:10.1520/E0407-07R15E01.
[29] Davis, J. R. (Ed.). (1999). Corrosion of Aluminum and Aluminum Alloys. ASTM International, Pennsylvania, United States. doi:10.31399/asm.tb.caaa.9781627082990.
[30] Mondolfo, L. F. (2013). Aluminum alloys: structure and properties. Elsevier, Amsterdam, Netherlands.
[31] Deschamps, A., & Bréchet, Y. (1998). Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy. Materials Science and Engineering: A, 251(1–2), 200–207. doi:10.1016/s0921-5093(98)00615-7.
[32] Marioara, C. D., Andersen, S. J., Jansen, J., & Zandbergen, H. W. (2003). The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy. Acta Materialia, 51(3), 789-796. doi:10.1016/S1359-6454(02)00470-6.
[33] Ringer, S. P., & Hono, K. (2000). Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Materials Characterization, 44(1–2), 101–131. doi:10.1016/S1044-5803(99)00051-0.
[34] Birbilis, N., Cavanaugh, M. K., & Buchheit, R. G. (2006). Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corrosion Science, 48(12), 4202–4215. doi:10.1016/j.corsci.2006.02.007.
[35] Kok, M. (2005). Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology, 161(3), 381–387. doi:10.1016/j.jmatprotec.2004.07.068.
[36] Ramesh, C. S., Keshavamurthy, R., Channabasappa, B. H., & Ahmed, A. (2009). Microstructure and mechanical properties of Ni-P coated Si3N4 reinforced Al6061 composites. Materials Science and Engineering: A, 502(1–2), 99–106. doi:10.1016/j.msea.2008.10.012.
[37] Chawla, N., & Shen, Y. L. (2001). Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 3(6), 357–370. doi:10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I.
[38] Prasad, D. S., & Shoba, C. (2014). Hybrid composites - A better choice for high wear resistant materials. Journal of Materials Research and Technology, 3(2), 172–178. doi:10.1016/j.jmrt.2014.03.004.
[39] Natrayan, L., & Senthil Kumar, M. (2019). Mechanical, microstructure and wear behaviour of lm25/sic/mica metal matrix composite fabricated by squeeze casting technique. Applied Engineering Letters, 4(2), 72–77. doi:10.18485/aeletters.2019.4.2.5.
[40] Udupa, G., Rao, S. S., & Gangadharan, K. V. (2014). Functionally Graded Composite Materials: An Overview. Procedia Materials Science, 5, 1291–1299. doi:10.1016/j.mspro.2014.07.442.
[41] Mitrasinovic, A., Robles Hernández, F. C., Djurdjevic, M., & Sokolowski, J. H. (2006). On-line prediction of the melt hydrogen and casting porosity level in 319 aluminum alloy using thermal analysis. Materials Science and Engineering: A, 428(1–2), 41–46. doi:10.1016/j.msea.2006.04.084.
[42] Anyalebechi, P. N. (2013). Hydrogen-induced gas porosity formation in Al-4.5 wt% Cu-1.4 wt% Mg alloy. Journal of Materials Science, 48(15), 5342–5353. doi:10.1007/s10853-013-7329-2.
[43] Tiryakioğlu, M. (2020). The effect of hydrogen on pore formation in aluminum alloy castings: Myth versus reality. Metals, 10(3), 368. doi:10.3390/met10030368.
[44] Dash, M., & Makhlouf, M. (2001). Effect of key alloying elements on the feeding characteristics of aluminum-silicon casting alloys. Journal of Light Metals, 1(4), 251–265. doi:10.1016/S1471-5317(02)00002-0.
[45] Samuel, A. M., Samuel, E., Songmene, V., & Samuel, F. H. (2023). A Review on Porosity Formation in Aluminum-Based Alloys. Materials, 16(5). doi:10.3390/ma16052047.
[46] Yuan, W., Zhao, H. D., Shen, X., Zou, C., Liu, Y., & Xu, Q. Y. (2025). Numerical simulation of microstructure and microporosity morphology in directional solidification of aluminum-copper alloys: Effect of copper content and withdrawal rate. China Foundry, 22(1), 33–44. doi:10.1007/s41230-024-4014-9.
[47] Rajan, T. P. D., & Pai, B. C. (2011). Processing of functionally graded aluminium matrix composites by centrifugal casting technique. Materials Science Forum, 690, 157–161. doi:10.4028/www.scientific.net/MSF.690.157.
[48] Balout, B., & Litwin, J. (2012). Mathematical modeling of particle segregation during centrifugal casting of metal matrix composites. Journal of Materials Engineering and Performance, 21(4), 450–462. doi:10.1007/s11665-011-9873-8.
[49] Salifu, S., & Apata Olubambi, P. (2025). Influence of HEA reinforcement on pulse electric current sintered Aluminium Composites: Microstructure, Density, and nanomechanical properties. Materials Letters, 378, 137563. doi:10.1016/j.matlet.2024.137563.
[50] Xiao, L. Q., Shang, X. M., Zhao, Y., Li, J. W., Curran, H. J., & Chen, P. (2025). A comparative study of two methods for estimating aluminum agglomerate sizes: Cohen’s pocket model and density-based clustering. Combustion and Flame, 273, 113957. doi:10.1016/j.combustflame.2024.113957.
[51] Yu, D. L., Jiang, B., Qi, X., Wang, C., & Song, R. G. (2024). Effect of current density on microstructure, mechanical behavior and corrosion resistance of black MAO coating on 6063 aluminum alloy. Materials Chemistry and Physics, 326, 129800. doi:10.1016/j.matchemphys.2024.129800.
[52] Li, Y., Wu, Z., Jing, Q., Zhang, L., Wang, D., Liu, Q., Qi, S., Xu, H., & Li, Y. (2024). Optimization effect and reaction mechanism of flake aluminum powder on the combustion performance of high-energy-density JP-10/PO composite fuel. Combustion and Flame, 262, 113369. doi:10.1016/j.combustflame.2024.113369.
[53] He, D., Chen, S. Bing, Lin, Y. C., Li, C., Xu, Z., & Xiao, G. (2023). Microstructural evolution characteristics and a unified dislocation-density related constitutive model for a 7046 aluminum alloy during hot tensile. Journal of Materials Research and Technology, 25, 2353–2367. doi:10.1016/j.jmrt.2023.06.008.
[54] Jung, J., Yoon, S., Gu, S., Kimura, Y., Toku, Y., & Ju, Y. (2023). Influence of a high-density pulsed electric current on the fatigue behaviour of prestrained aluminium alloys. Engineering Failure Analysis, 150, 107230. doi:10.1016/j.engfailanal.2023.107230.
[55] Zhang, G., Zhu, Z., Ning, J., & Feng, C. (2023). Dynamic impact constitutive relation of 6008-T6 aluminum alloy based on dislocation density and second-phase particle strengthening effects. Journal of Alloys and Compounds, 932, 167718. doi:10.1016/j.jallcom.2022.167718.
[56] Tjong, S. C., & Ma, Z. Y. (1997). The high-temperature creep behaviour of aluminium-matrix composites reinforced with SiC, Al2O3 and TiB2 particles. Composites Science and Technology, 57(6), 697–702. doi:10.1016/s0266-3538(97)00029-8.
[57] Zhang, S., & Wang, F. (2007). Comparison of friction and wear performances of brake materials containing different amounts of ZrSiO4 dry sliding against SiCp reinforced Al matrix composites. Materials Science and Engineering: A, 443(1–2), 242–247. doi:10.1016/j.msea.2006.09.054.
[58] Hu, M., Sun, D., & Zhu, M. (2024). Simulation of gas porosity formation and interaction with dendrite and eutectic structures during solidification of Al-Si alloys. Materials & Design, 241, 112977. doi:10.1016/j.matdes.2024.112977.
[59] Lu, W., Xing, H., Hu, R., Zhang, Q., & Yao, Z. (2023). The effect of wettability on gas porosity formation during directional solidification of alloys: Insights from lattice Boltzmann-cellular automata simulations. Journal of Materials Research and Technology, 22, 424–431. doi:10.1016/j.jmrt.2022.11.123.
[60] Zhang, A., Guo, Z., Jiang, B., Du, J., Wang, C., Huang, G., Zhang, D., Liu, F., Xiong, S., & Pan, F. (2021). Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification. Acta Materialia, 214, 117005. doi:10.1016/j.actamat.2021.117005.
[61] Lu, W., Xing, H., Zhang, Q., Shen, Z., & An, Q. (2022). Modeling of microstructure formation with gas porosity growth during columnar dendritic solidification of aluminum alloys. Journal of Materials Research and Technology, 16, 1413–1421. doi:10.1016/j.jmrt.2021.12.078.
[62] Kang, H. J., Yoon, P. H., Lee, G. H., Park, J. Y., Jung, B. J., Lee, J. Y., Lee, C. U., Kim, E. S., & Choi, Y. S. (2021). Evaluation of the gas porosity and mechanical properties of vacuum assisted pore-free die-cast Al-Si-Cu alloy. Vacuum, 184, 109917. doi:10.1016/j.vacuum.2020.109917.
[63] Niklas, A., Orden, S., Bakedano, A., da Silva, M., Nogués, E., & Fernández-Calvo, A. I. (2016). Effect of solution heat treatment on gas porosity and mechanical properties in a die cast step test part manufactured with a new AlSi10MnMg(Fe) secondary alloy. Materials Science and Engineering: A, 667, 376–382. doi:10.1016/j.msea.2016.05.024.
[64] Debnath, S., Roy, S., & Pramanick, A. K. (2020). An Exploratory Comparative Study of Fabricated Silica-Aluminium Metal Matrix Composites with Casted Aluminium-Silicon Alloys. Journal of Physics: Conference Series, 1579(1), 12014. doi:10.1088/1742-6596/1579/1/012014.
[65] Zhu, M., Deng, C., Zhang, Z., Yang, D., Zhang, H., Wang, L., & Lu, X. (2025). Stereolithography 3D printing ceramics for ultrahigh strength aluminum matrix composites. Journal of Manufacturing Processes, 139, 126–132. doi:10.1016/j.jmapro.2025.02.037.
[66] Rajan, T. P. D., Pillai, R. M., & Pai, B. C. (2010). Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites. Materials Characterization, 61(10), 923–928. doi:10.1016/j.matchar.2010.06.002.
[67] Zhou, L., Chen, C., Yang, F., Han, W., & Guan, Q. (2020). Micropore structure characteristics and quantitative characterization methods of lacustrine shale-A case study from the member 2 of Kongdian Formation, Cangdong sag, Bohai Bay Basin. Petroleum Research, 5(2), 93–102. doi:10.1016/j.ptlrs.2020.01.001.
[68] Rabin, B. H., Smolik, G. R., & Korth, G. E. (1990). Characterization of entrapped gases in rapidly solidified powders. Materials Science and Engineering A, 124(1), 1–7. doi:10.1016/0921-5093(90)90328-Z.
[69] Du, Y., Chen, F., Cao, S., & Xie, R. J. (2024). Effect of an AC-DC composite longitudinal magnetic field on the microstructure and mechanical properties of WAAM Al-5 %Mg alloy. Materials Today Communications, 41, 110911. doi:10.1016/j.mtcomm.2024.110911.
[70] Šulak, I., Chlupova, A., Zalezak, T., Kubena, I., Roth, J. P., Jahns, K., Krupp, U., & Kruml, T. (2024). High-temperature Fatigue and Creep Performance of Additively Manufactured NiCu-based Alloy. Procedia Structural Integrity, 52, 143–153. doi:10.1016/j.prostr.2023.12.015.
[71] Sayuti, M., Sulaiman, S., Vijayaram, T. R., Baharudin, B. T. H., & Arifi, M. K. A. (2012). Manufacturing and Properties of Quartz (SiO2) Particulate Reinforced Al-11.8%Si Matrix Composites. In Composites and Their Properties. IntechOpen Limited. doi:10.5772/48095.
[72] Raghvan, S., Singhal, P., Rattan, S., & Tyagi, A. K. (2023). Durable PP/EPDM/GF/SiO2 nanocomposites with improved strength and toughness for orthotic applications. Journal of the Mechanical Behavior of Biomedical Materials, 138, 105582. doi:10.1016/j.jmbbm.2022.105582.
[73] Sant’Ana Gallo, L., Célarié, F., Bettini, J., Rodrigues, A. C. M., Rouxel, T., & Zanotto, E. D. (2022). Fracture toughness and hardness of transparent MgO–Al2O3–SiO2 glass-ceramics. Ceramics International, 48(7), 9906–9917. doi:10.1016/j.ceramint.2021.12.195.
[74] Daguano, J. K. M. F., Suzuki, P. A., Strecker, K., Fernandes, M. H. F. V., & Santos, C. (2012). Evaluation of the micro-hardness and fracture toughness of amorphous and partially crystallized 3CaO·P2O5-SiO2-MgO bioglasses. Materials Science and Engineering: A, 533, 26–32. doi:10.1016/j.msea.2011.10.117.
[75] Wei, W., Wang, Q., Chen, R., Zheng, C., & Su, Y. (2024). Improved toughness and oxidation resistance of Nb–Si based ultra-high temperature alloys by in-situ generated La2O3 phase. Materials Characterization, 208, 113686. doi:10.1016/j.matchar.2024.113686.
[76] Nishiyama, N., Seike, S., Hamaguchi, T., Irifune, T., Matsushita, M., Takahashi, M., Ohfuji, H., & Kono, Y. (2012). Synthesis of nanocrystalline bulk SiO2 stishovite with very high toughness. Scripta Materialia, 67(12), 955–958. doi:10.1016/j.scriptamat.2012.08.028.
[77] Radhika, N., & Raghu, R. (2015). Experimental investigation on abrasive wear behavior of functionally graded aluminum composite. Journal of Tribology, 137(3), 31606. doi:10.1115/1.4029941.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















