Effect of Cu and SiO₂ on a Remelted-Recycled Piston Alloy Under Vertical Centrifugal Casting Conditions

Vertical Centrifugal Casting Remelting Piston Cu Particle Silica Sand Functionally Graded Material (FGM)

Authors

Downloads

Functionally graded aluminum matrices produced by means of centrifugal casting offer a route to location-specific properties, yet sustainable feedstocks and dual-density reinforcements are less well explored. In this work, we evaluate vertical centrifugal casting (VCC) of a remelted, recycled piston alloy reinforced with silica (SiO₂) and copper (Cu) particulates selected for their contrasting densities relative to the matrix. Castings were produced at 1000 rpm for 5 minutes using a 500 °C preheated mold and an 800 °C pour temperature. Cu was added at 1–4 wt.% and SiO₂ was added at 0–9 wt.%. Bulk density/porosity measurements, Vickers hardness testing, and optical/SEM microstructural analysis were employed to characterize the resulting gradients. The density increased with the radial distance from the rotation axis, accompanied by a monotonic decrease in porosity, consistent with centrifugal separation. Microstructurally, SiO₂ concentrated toward the inner region near the rotation center; in comparison, Cu was enriched at the outer periphery. Correspondingly, hardness exhibited a spatial gradient: SiO₂-reinforced zones were hardest near the inner region, whereas Cu-rich outer zones were hardest at the external rim. These results demonstrate that VCC of a recycled Al–Si feedstock can be used to reliably tailor its microstructure and properties through density-driven particle segregation, enabling controllable, bidirectional functional grading using environmentally friendly starting materials.