Numerical Assessment of Inter-Pillar Stability in Inclined Ore Bodies for Underground Mining Design
Downloads
This paper presents a methodology for assessing the stability of stoping chambers and inter-chamber pillars (ICPs) during underground mining of ore bodies with varying dip angles. The objective is to determine optimal parameters for excavation elements (chamber width and pillar spacing) that ensure the stability of the mining system under fractured rock mass conditions. The Zhezkazgan deposit’s geomechanical properties were used as the modeling case study. The methodology includes geotechnical core mapping (with RQD, Q-system, and GSI classifications), laboratory strength testing, field–laboratory correlation, and numerical modeling using the finite element method. Particular focus is placed on the sensitivity of stability to variations in GSI, depth, and excavation geometry. The results indicate that increasing the dip angle significantly reduces the stability of both chambers and pillars. The novelty of this study lies in the comprehensive assessment of structural factors and excavation geometry on mass stability under site-specific geological conditions.
Downloads
[1] Musin, A. A., Imashev, A. J., Shaike, N. K., Suimbaeva, A.M. (2024). Determining The Stable State of Man-Made Outbursts During Mining of Inclined Ore Deposits by Room-And-Pillar Mining. Mining Journal of Kazakhstan, 10(234), 6–12. doi:10.48498/Minmag.2024.234.10.001. (In Russian).
[2] Dzimunya, N., Fujii, Y., Li, Z., & Amagu Amagu, C. (2025). Assessing Pillar Design Strategies in Hard Rock Room-and-Pillar Mining: A Review and Case Studies from the Great Dyke of Zimbabwe. Mining, Metallurgy & Exploration, 42(2), 685-704. doi:10.1007/s42461-025-01200-9.
[3] Huang, Y. (2022). Numerical investigation of stress field evolution in inclined ore bodies. TUST, 134, 105008. doi:10.1016/j.tust.2022.105008.
[4] Imashev, A. Z., Suimbayeva, A. M., Abdibaitov, S. A., Musin, A. A., & Asan, S. Y. (2020). Justification of the optimal cross-sectional shape of the mine workings in accordance with the rating classification. UGOL, 6(6), 4–9. doi:10.18796/0041-5790-2020-6-4-9.
[5] Zhang, Y., & Ni, P. (2018). Design optimization of room and pillar mines: A case study of the Xianglushan tungsten mine. Quarterly Journal of Engineering Geology and Hydrogeology, 51(3), 352–364. doi:10.1144/qjegh2017-037.
[6] Napa-García, G. F., Câmara, T. R., & Navarro Torres, V. F. (2019). Optimization of room-and-pillar dimensions using automated numerical models. International Journal of Mining Science and Technology, 29(5), 797–801. doi:10.1016/j.ijmst.2019.02.003.
[7] Kumar, S., Sinha, R. K., Jawed, M., & Murmu, S. (2024). Assessment of coal pillar strength under the influence of sand stowing in deep coal mines. Geotechnical and Geological Engineering, 42(4), 2815–2831. doi:10.1007/s10706-023-02707-y.
[8] Zhou, Z., Zhou, J., Lai, L., Xu, M., & Xu, Y. (2024). Determination of optimal mining width for coal mining under the slope by of using numerical simulation. Scientific Reports, 14(1), 1124. doi:10.1038/s41598-024-51624-4.
[9] Wu, Y., Tang, Y., Xie, P., Hu, B., Lang, D., & Wang, H. (2024). Stability analysis of ‘roof-coal pillar’ structure in longwall multi-section mining of steeply dipping coal seam. Geomatics, Natural Hazards and Risk, 15(1). doi:10.1080/19475705.2024.2359998.
[10] Pan, Q., & Dias, D. (2018). Three dimensional face stability of a tunnel in weak rock masses subjected to seepage forces. Tunnelling and Underground Space Technology, 71, 555–566. doi:10.1016/j.tust.2017.11.003.
[11] Martin, C. D., & Maybee, W. G. (2000). The strength of hard-rock pillars. International Journal of Rock Mechanics and Mining Sciences, 37(8), 1239-1246. doi:10.1016/S1365-1609(00)00032-0.
[12] He, Y., Huang, Q., & Ma, L. (2024). Research on roof weighting mechanism of coal pillar mining in shallow buried closely spaced multi-seams. Lithosphere, 2024(3), 109. doi:10.2113/2024/lithosphere_2024_109.
[13] Eremin, M., Peryshkin, A., Esterhuizen, G., Pavlova, L., & Fryanov, V. (2022). Numerical Analysis of Pillar Stability in Longwall Mining of Two Adjacent Panels of an Inclined Coal Seam. Applied Sciences (Switzerland), 12(21), 11028. doi:10.3390/app122111028.
[14] Eremenko, V. A., Kosyreva, M. A., Vysotin, N. G., & Khazhy-Ylai, C. V. (2021). Geomechanical justification of room-and-pillar dimensions for rock salt and polymineral salt mining. Gornyi Zhurnal, 2021(1), 37–43. doi:10.17580/gzh.2021.01.07.
[15] Ma, T., Wang, L., Suorineni, F. T., & Tang, C. (2016). Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading. Shock and Vibration, 2016, 6195482. doi:10.1155/2016/6195482.
[16] Sordo, B., Rathje, E., & Kumar, K. (2024). Sequential hybrid finite element and material point method to simulate slope failures. Computers and Geotechnics, 173, 106525. doi:10.1016/j.compgeo.2024.106525.
[17] Quevedo, R. J., Sari, Y. A., & McKinnon, S. D. (2024). Cave mine pillar stability analysis using machine learning. Journal of the Southern African Institute of Mining and Metallurgy, 124(2), 43–52. doi:10.17159/2411-9717/2509/2024.
[18] Vlachogiannis, I., & Benardos, A. (2024). Proposed formulas for pillar stress estimation in a regular room-and-pillar pattern. International Journal of Rock Mechanics and Mining Sciences, 180, 105826. doi:10.1016/j.ijrmms.2024.105826.
[19] Mehra, A., & Budi, G. (2024). 3D Modelling approach to identify parametric configurations for pillar stability in underground metal mine: a case study. Geomatics, Natural Hazards and Risk, 15(1), 2367630. doi:10.1080/19475705.2024.2367630.
[20] Maina, D., & Konietzky, H. (2025). The effect of the intermediate principal stress on pillar strength. International Journal of Coal Science & Technology, 12(1), 8. doi:10.1007/s40789-025-00747-8.
[21] Imashev, A. Zh., Sudarikov, A. E., Musin, A. A., Suimbayeva, A. M., & Asan, S. Yu. (2021). Improving the Quality of Blasting Indicators by Studying The Natural Stress Field and The Impact of the Blast Force on The Rock Mass. Series of Geology and Technical Sciences, 4(448), 30–35. doi:10.32014/2021.2518-170x.78.
[22] Mussin, A., Kydrashov, A., Asanova, Z., Abdrakhman, Y., & Ivadilinova, D. (2024). Ore dilution control when mining low-thickness ore bodies using a system of sublevel drifts. Mining of Mineral Deposits, 18(2), 18–27. doi:10.33271/mining18.02.018.
[23] Imashev, A. Z., Suimbaeva, A. M., & Musin, A. A. (2024). Predictive assessment of ore dilution in mining thin steeply dipping deposits by a system of sublevel drifts. Notes of the Mining Institute, 266, 283-294.
[24] Hoek, E., & Brown, E. T. (2019). The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445–463. doi:10.1016/j.jrmge.2018.08.001.
[25] Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130), 295–305. doi:10.1098/rspa.1953.0064.
[26] Terzaghi, R. D. (1965). Sources of error in joint surveys. Geotechnique, 15(3), 287–304. doi:10.1680/geot.1965.15.3.287.
[27] Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics Felsmechanik Mécanique Des Roches, 6(4), 189–236. doi:10.1007/BF01239496.
[28] Hoek, E., Marinos, P., & Benissi, M. (1998). Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bulletin of Engineering Geology and the Environment, 57(2), 151–160. doi:10.1007/s100640050031.
[29] Gavin, H. P. (2019). The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering Duke University August, 3, 1-23.
[30] Yue, R., Li, K., Qin, Q., Li, M., & Li, M. (2022). Study on the Weakening Law and Classification of Rock Mass Damage under Blasting Conditions. Energies, 15(5), 1809. doi:10.3390/en15051809.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














