Numerical Analysis of Ground Motion Topographic and Geological Effect: A Case Study of MOXI Platform
Downloads
The ground motion amplification effect influenced by diverse topographic and geological conditions was investigated to enhance the seismic design standards for mountain structures. A comprehensive series of two-dimensional and three-dimensional numerical simulations was conducted. These simulations utilized idealized and real-world topographic models, meticulously considering various critical parameters, such as platform height, width, slope, surface angle, and soil properties. The results reveal that topographic and geological factors both significantly impact the ground motion amplification effect, with the maximum amplification factors frequently surpassing those stipulated by the current Chinese seismic code. Based on these findings, a refined and modified formula was developed for calculating the ground motion amplification factor that integrates the influences of height, width, slope, and geological conditions. The validity and feasibility of this modified formula were substantiated thoroughly through detailed comparisons between the actual observed values and the suggested values, demonstrating its potential to improve the safety and reliability of seismic design in mountainous regions substantially.
Downloads
[1] Li, S. Q., & Chen, Y. S. (2024). Seismic risk estimation of composite structures considering improved vulnerability levels. Structures, 65, 106645. doi:10.1016/j.istruc.2024.106645.
[2] Lopes, G. C., Silva, V., Costa, C., Vicente, R., & Oliveira, C. S. (2024). Advancing the understanding of earthquake risk in Portugal. Bulletin of Earthquake Engineering, 22(11), 5379–5401. doi:10.1007/s10518-024-01975-0.
[3] FathiAzar, A., De Angeli, S., & Cattari, S. (2024). Towards integrated multi-risk reduction strategies: A catalog of flood and earthquake risk mitigation measures at the building and neighborhood scales. International Journal of Disaster Risk Reduction, 113, 104884. doi:10.1016/j.ijdrr.2024.104884.
[4] Bhadauria, P. K. S. (2024). Comprehensive review of AI and ML tools for earthquake damage assessment and retrofitting strategies. Earth Science Informatics, 17(5), 3945–3962. doi:10.1007/s12145-024-01431-2.
[5] Manzunzu, B., Midzi, V., Zulu, B., Mulabisana, T., Pule, T., Sethobya, M., & Mankayi, N. (2025). Site response analysis for estimation of seismic site amplification in the city of Durban (South Africa). Natural Hazards Research, 5(1), 219–228. doi:10.1016/j.nhres.2024.11.002.
[6] Zhou, H. (2025). Multi-parameter modeling and analysis of ground motion amplification in the Quaternary sedimentary basin of the Beijing-Tianjin-Hebei region. Earthquake Science, 38(2), 136–151. doi:10.1016/j.eqs.2024.11.002.
[7] NEES-2010-0977. (2012). Topographic effects in strong ground motion – from physical and numerical modeling to design. Network for Earthquake Engineering Simulation (NEES), West Lafayette, United States. Available online: https://www.designsafe-ci.org/data/browser/public/nees.public/NEES-2010-0977 (accessed on August 2025).
[8] Pelekis, P., Batilas, A., Pefani, E., Vlachakis, V., & Athanasopoulos, G. (2017). Surface topography and site stratigraphy effects on the seismic response of a slope in the Achaia-Ilia (Greece) 2008 Mw6.4 earthquake. Soil Dynamics and Earthquake Engineering, 100, 538–554. doi:10.1016/j.soildyn.2017.05.038.
[9] Dhabu, A. C., & Gudimella, R. S. T. (2021). Influence of Himalayan topography on earthquake ground motions. Arabian Journal of Geosciences, 14(18), 1931. doi:10.1007/s12517-021-08111-1.
[10] Hartzell, S., Meremonte, M., Ramirez-Guzman, L., & McNamara, D. (2013). Ground Motion in the Presence of Complex Topography: Earthquake and Ambient Noise Sources. Bulletin of the Seismological Society of America, 104(1), 451–466. doi:10.1785/0120130088.
[11] Luo, Y., Fan, X., Huang, R., Wang, Y., Yunus, A. P., & Havenith, H. B. (2020). Topographic and near-surface stratigraphic amplification of the seismic response of a mountain slope revealed by field monitoring and numerical simulations. Engineering Geology, 271, 105607. doi:10.1016/j.enggeo.2020.105607.
[12] Glinsky, N., Bertrand, E., & Régnier, J. (2019). Numerical simulation of topographical and geological site effects. Applications to canonical topographies and Rognes hill, South East France. Soil Dynamics and Earthquake Engineering, 116, 620–636. doi:10.1016/j.soildyn.2018.10.020.
[13] Hough, S. E., Altidor, J. R., Anglade, D., Given, D., Janvier, M. G., Maharrey, J. Z., Meremonte, M., Mildor, B. S. L., Prepetit, C., & Yong, A. (2010). Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake. Nature Geoscience, 3(11), 778–782. doi:10.1038/ngeo988.
[14] Shen, H., Liu, Y., Li, X., Li, H., Wang, L., & Huang, W. (2025). The combined amplification effects of topography and stratigraphy of layered rock slopes under vertically and obliquely incident seismic waves. Soil Dynamics and Earthquake Engineering, 193, 109331. doi:10.1016/j.soildyn.2025.109331.
[15] GB 50011-2010. (2016). Code for seismic design of buildings. China Architecture & Building Press, Beijing, China. (In Chinese).
[16] Zhang, L., Fu, L., Liu, A., & Chen, S. (2023). Simulating the strong ground motion of the 2022 MS6.8 Luding, Sichuan, China Earthquake. Earthquake Science, 36(4), 283–296. doi:10.1016/j.eqs.2023.05.001.
[17] Zhang, S., Wu, Z., & Zhang, Y. (2023). Is the September 5, 2022, Luding MS6.8 earthquake an ‘unexpected’ event? Earthquake Science, 36(1), 76–80. doi:10.1016/j.eqs.2023.02.004.
[18] Yuan, Z., Zhao, J., Huang, Y., Yu, H., Niu, A., Ma, H., & Ma, L. (2023). Study on deformation characteristics and dynamic cause of the Luding M S6.8 earthquake. Frontiers in Earth Science, 11, 1232205. doi:10.3389/feart.2023.1232205.
[19] Zhou, J., Xi, N., Kang, C., Li, L., Chen, K., Tian, X., Wang, C., & Tian, J. (2023). An accessible strong-motion dataset (PGA, PGV, and site vS30) of 2022 MS6.8 Luding, China Earthquake. Earthquake Science, 36(4), 309–315. doi:10.1016/j.eqs.2023.01.001.
[20] Liu, X., Su, P., Li, Y., Xia, Z., Ma, S., Xu, R., Lu, Y., Li, D., Lu, H., & Yuan, R. (2023). Spatial distribution of landslide shape induced by Luding Ms6.8 earthquake, Sichuan, China: case study of the MOXI Town. Landslides, 20(8), 1667–1678. doi:10.1007/s10346-023-02070-2.
[21] Song, X., Cao, T., Gao, P., & Han, Q. (2020). Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method. International Journal of Mechanical Sciences, 165, 105158. doi:10.1016/j.ijmecsci.2019.105158.
[22] Peng, Y., Zhao, J., Sepehrnoori, K., & Li, Z. (2020). Fractional model for simulating the viscoelastic behavior of artificial fracture in shale gas. Engineering Fracture Mechanics, 228, 106892. doi:10.1016/j.engfracmech.2020.106892.
[23] Liu, X., Chen, J., Zhao, Z., Lan, H., & Liu, F. (2018). Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface. Pure and Applied Geophysics, 175(10), 3419–3439. doi:10.1007/s00024-018-1879-9.
[24] Jing-bo, L. I. U., Zhen-yu, W. A. N. G., Xiu-Li, D. U., & Yi-Xin, D. U. (2005). Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems. Engineering Mechanics, 22(6), 46-51.
[25] Zhao, S., Luo, Q., Zhang, M., Xiong, F., & Yang, S. (2023). Numerical analysis of ground motion amplification coefficient under complex topography. Structures, 58, 105353. doi:10.1016/j.istruc.2023.105353.
[26] Sun, Z., Kong, L., Guo, A., Xu, G., & Bai, W. (2019). Experimental and numerical investigations of the seismic response of a rock–soil mixture deposit slope. Environmental Earth Sciences, 78(24), 1–14. doi:10.1007/s12665-019-8717-y.
[27] Huang, D., Sun, P., Jin, F., & Du, C. (2021). Topographic amplification of ground motions incorporating uncertainty in subsurface soils with extensive geological borehole data. Soil Dynamics and Earthquake Engineering, 141, 106441. doi:10.1016/j.soildyn.2020.106441.
[28] Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite Element Method Accuracy for Wave Propagation Problems. Journal of the Soil Mechanics and Foundations Division, 99(5), 421–427. doi:10.1061/jsfeaq.0001885.
[29] Pan, Y. Ren, J. Ren, Y. Zhao, J. & Ba, Z. (2023). Seismic damage investigation and analysis of a frame structure in the Luding Ms6.8 earthquake with platform effect.” China Civil Engineering Journal, 23050358. doi:10.15951/j.tmgcxb.23050358.
[30] Zhou, H., Li, J., & Chen, X. (2020). Establishment of a seismic topographic effect prediction model in the Lushan Ms 7.0 earthquake area. Geophysical Journal International, 221(1), 273–288. doi:10.1093/gji/ggaa003.
[31] Wang, L., Wu, Z., Xia, K., Liu, K., Wang, P., Pu, X., & Li, L. (2019). Amplification of thickness and topography of loess deposit on seismic ground motion and its seismic design methods. Soil Dynamics and Earthquake Engineering, 126, 105090. doi:10.1016/j.soildyn.2018.02.021.
[32] Zhang, Z., Fleurisson, J. A., & Pellet, F. (2018). The effects of slope topography on acceleration amplification and interaction between slope topography and seismic input motion. Soil Dynamics and Earthquake Engineering, 113, 420–431. doi:10.1016/j.soildyn.2018.06.019.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














