Development of Fiber-Reinforced Concrete for Road Pavement Surfaces Enhanced with Complex Additives
Downloads
This study aims to develop high-performance road pavement concrete capable of withstanding increasing traffic loads while ensuring long service life and reduced maintenance needs. The research focuses on enhancing the mechanical characteristics of fine-grained concrete used in the outer pavement layer through the incorporation of complex additives and dispersed reinforcement. The methodology involved modifying the concrete matrix using the superplasticizer Melflux 5581F, microsilica MK-85, and varying percentages of basalt fibers introduced through different preparation techniques. Mechanical testing, including compressive and flexural strength evaluations, was performed on 40×40×160 mm specimens cured under standard conditions and tested at 7 and 28 days. The analysis showed that Melflux 5581F significantly enhanced strength without increasing cement content, while MK-85 further improved compressive and flexural strengths by up to 50.59% and 46.28%, respectively. The addition of basalt fibers increased flexural strength, with optimal formulations achieving 89.49 MPa in compressive strength and 11.14 MPa in flexural strength. These findings demonstrate that the combined use of chemical, mineral, and fiber additives, together with appropriate technological approaches, substantially improves the performance of road concrete. The proposed modified concrete exhibits enhanced durability, offering a promising solution for extending pavement service life and reducing repair frequency.
Downloads
[1] Fang, M., Chen, Y., Deng, Y., Wang, Z., & Zhu, M. (2023). Toughness improvement mechanism and evaluation of cement concrete for road pavement: A review. Journal of Road Engineering, 3(2), 125–140. doi:10.1016/j.jreng.2023.01.005.
[2] Chen, S. C., Gao, M. Y., Lin, W. T., Huang, C. Y., & Chen, W. C. (2024). Strength and microstructural development in concrete pavements by blended copper tailings powder and copper tailings sand. Materials Today Communications, 41. doi:10.1016/j.mtcomm.2024.110933.
[3] Yu, Z., Hou, Y., & Lv, D. (2025). Study on the mechanism and service life prediction of freeze resistance in basalt fiber-reinforced recycled aggregate concrete (BFRAC) under flexural fatigue loading. Construction and Building Materials, 492, 19 143084. doi:10.1016/j.conbuildmat.2025.143084.
[4] Li, Y. F., Hung, J. Y., Syu, J. Y., Chang, S. M., & Kuo, W. S. (2022). Influence of sizing of basalt fiber on the mechanical behavior of basalt fiber reinforced concrete. Journal of Materials Research and Technology, 21, 295–307. doi:10.1016/j.jmrt.2022.09.045.
[5] Lei, T., Qiu, J., Li, L., Huo, Y., & Zhang, T. (2025). Study on properties of basalt fiber coal gangue concrete modified by supplementary cementitious materials: Mechanics, durability, microstructure. Journal of Building Engineering, 104, 112271. doi:10.1016/j.jobe.2025.112271.
[6] Qiu, J., Zhang, T., Li, L., Huo, Y., Lei, T., & Liu, Y. (2025). Improvement of mechanical properties and frost resistance of coal gangue concrete: synergistic effect and microscopic mechanism of basalt fiber, fly ash and silica fume. Journal of Cleaner Production, 522, 1 146324. doi:10.1016/j.jclepro.2025.146324.
[7] Quanchang, R., Zhe, N., Jian, G., & Lei, Y. (2025). Damage evolution of basalt fiber-reinforced ultra-rapid hardening concrete based on acoustic emission monitoring. Construction and Building Materials, 501, 144331. doi:10.1016/j.conbuildmat.2025.144331.
[8] Nassani, D. E. (2020). Experimental and analytical study of the mechanical and flexural behavior of hybrid fiber concretes. Structures, 28, 1746–1755. doi:10.1016/j.istruc.2020.10.014.
[9] Yan, S., Dong, Q., Chen, X., Li, J., Wang, X., & Shi, B. (2024). An experimental and numerical study on the hybrid effect of basalt fiber and polypropylene fiber on the impact toughness of fiber reinforced concrete. Construction and Building Materials, 411. doi:10.1016/j.conbuildmat.2023.134270.
[10] Jiang, C., Fan, K., Wu, F., & Chen, D. (2014). Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Materials & Design, 58, 187–193. doi:10.1016/j.matdes.2014.01.056.
[11] Chen, Z., Luo, S., Liu, S., Shao, J., He, Y., & Li, Y. (2025). Effect of emulsifier on the interface structure and performance of reclaimed asphalt pavement aggregate cement concrete. Construction and Building Materials, 458. doi:10.1016/j.conbuildmat.2024.139603.
[12] Suebsuk, J., Horpibulsuk, S., Phunpeng, V., Panpipat, P., Chaidachatorn, K., Kroehong, W., & Somna, R. (2024). Concrete mix design: Optimizing recycled asphalt pavement in Portland cement concrete. Construction and Building Materials, 455, 139180. doi:10.1016/j.conbuildmat.2024.139180.
[13] Yao, C., Guo, Y., Shen, A., Cui, W., & He, Z. (2021). Recycling of fine-asphalt-pavement solid waste for low-shrinkage rapid hardening Portland cement concrete pavement. Construction and Building Materials, 289. doi:10.1016/j.conbuildmat.2021.123132.
[14] Feng, S., Jiang, Y., Lyu, J., Xiao, H., Zhang, Q., Song, R., Zhang, J., & Ren, Z. (2024). Effect of nanosilica and fiber on mechanical properties and microstructure of recycled coarse aggregates road concrete. Construction and Building Materials, 428. doi:10.1016/j.conbuildmat.2024.136404.
[15] Krayushkina, K., Khymerik, T., Skrypchenko, O., Moshkovskyi, I., & Pershakov, V. (2017). Investigation of Fiber Concrete for Road and Bridge Building. Procedia Engineering, 187, 620–627. doi:10.1016/j.proeng.2017.04.422.
[16] Khan, M., Rehman, A., & Ali, M. (2020). Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Construction and Building Materials, 244. doi:10.1016/j.conbuildmat.2020.118382.
[17] Karapetyan, A., Badalyan, M., Arzumanyan, A., Muradyan, N., & Grigoryan, A. (2023). Study of Physical and Mechanical Properties of Fiber Concretes with Different Compositions. Engineering Proceedings, 56(1), 224. doi:10.3390/ASEC2023-15930.
[18] Grigoryan, A. (2025). Improvement of the Cement Mortar Characteristics Reinforced with Basalt Fibers. Journal of Architectural and Engineering Research, 8, 12–21. doi:10.54338/27382656-2025.8-02.
[19] Liu, J., Chen, H., Guan, B., Liu, K., Wen, J., & Sun, Z. (2018). Influence of mineral nano-fibers on the physical properties of road cement concrete material. Construction and Building Materials, 190, 287–293. doi:10.1016/j.conbuildmat.2018.09.025.
[20] Xu, F., Zhou, M., Chen, J., & Ruan, S. (2014). Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Construction and Building Materials, 63, 142–149. doi:10.1016/j.conbuildmat.2014.04.054.
[21] Kumar, S., & Sharma, U. (2025). Mechanical performance of cement concrete with use of combined fibers of basalt and bamboo. Physics and Chemistry of the Earth, 137. doi:10.1016/j.pce.2024.103799.
[22] Nobili, A., Lanzoni, L., & Tarantino, A. M. (2013). Experimental investigation and monitoring of a polypropylene-based fiber reinforced concrete road pavement. Construction and Building Materials, 47, 888–895. doi:10.1016/j.conbuildmat.2013.05.077.
[23] Hu, P., Song, X., Liu, Y., Gao, Z., Wu, Q., & Zhang, L. (2024). Optimizing fiber-reinforced flexible concrete blankets: A study on basalt fiber effects on strength properties. Construction and Building Materials, 456. doi:10.1016/j.conbuildmat.2024.139272.
[24] Wang, G., Zhuang, Y., Song, L., He, Z., Zhang, J., & Zhou, H. (2025). Mechanical properties and failure mechanism of fiber-reinforced concrete materials: Effects of fiber type and content. Construction and Building Materials, 465. doi:10.1016/j.conbuildmat.2025.140190.
[25] Justin, S., Thushanthan, K., & Tharmarajah, G. (2025). Durability and mechanical performance of glass and natural fiber-reinforced concrete in acidic environments. Construction and Building Materials, 465. doi:10.1016/j.conbuildmat.2025.140262.
[26] Xue, H., Wang, J., & Jiang, Q. (2024). Fatigue flexural properties of graphite tailings concrete modified with basalt fiber. Case Studies in Construction Materials, 21. doi:10.1016/j.cscm.2024.e04069.
[27] Mára, M., Konrád, P., Fornůsek, J., Zatloukal, J., Frydrýn, M., Nouzovský, L., Mičunek, T., & Sovják, R. (2020). Development of mobile road barrier made of ultra-high-performance fibre-reinforced concrete. Materials Today: Proceedings, 32, 162–167. doi:10.1016/j.matpr.2020.04.182.
[28] Huo, X., Wang, P., Wang, S., Guo, R., & Wang, Y. (2024). Experimental study on the mechanical properties and impermeability of basalt-PVA hybrid fibre reinforced concrete. Case Studies in Construction Materials, 21. doi:10.1016/j.cscm.2024.e03646.
[29] Mokari Rahmdel, J., Shafei, E., Salamat Ravandi, K., & Zirakian, T. (2025). Experiments on Strength and Ductility Characteristics of Polypropylene Fiber-Reinforced Concrete. Journal of Civil Engineering and Construction, 14(1), 20–27. doi:10.32732/jcec.2025.14.1.20.
[30] Yakupov, M. I., Morozov, N. M., Borovskikh, I. V, & G, K. V. (n.d.). Modified fine-grained concrete for the construction of monolithic pavements for airfield runways. Izvestiya Kaz SASU, 4(26), 257–261.
[31] Stepanov, S. V, Morozov, N. M., & Khozin, V. G. (2015). Investigation of the phase composition of hydrated cement with a complex hardening accelerator. Kazan State University of Architecture and Engineering, 1, 142–147.
[32] GOST 31108-2020. (2020). Common Cements. Specifications. GOST, Moscow, Russia. (In Russian).
[33] GOST EN 196-1-2002. (2002). Methods for testing of cement. Part 1. Determination of strength. GOST, Moscow, Russia. (In Russian).
[34] GOST EN 196-2-2002. (2002). Methods of Testing Cement. Part 2. Chemical Analysis of Cement. GOST, Moscow, Russia. (In Russian).
[35] GOST EN 196-3-2002. (2002). Methods of Testing Cement. Part 3. Determination of Setting Time and Soundness. GOST, Moscow, Russia. (In Russian).
[36] GOST 23732-2011. (2012). Water for concrete and building solutions. GOST, Moscow, Russia. (In Russian).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















