Finite Element Analysis on Shear Responses of Reinforced Concrete Beams Strengthened with ETS-FRP Bars
Downloads
This study conducts a numerical analysis on the shear performance of reinforced concrete beams retrofitted with fiber-reinforced polymer (FRP) bars with embedded through-section (ETS) technique. The study uses 3D nonlinear finite element method (FEM) and evaluates the shear features of ETS-FRP-strengthened beams in failure modes, shear capacity, stiffness, and ductility. The FE analyses consider the effects of key design parameters, including transverse steel stiffness (Eswρsw), ETS-FRP bar stiffness (Efρf), compressive strength of concrete (f’c), beam geometry, and the values of shear span-to-effective depth (a/d) ratio. Consequently, ETS-strengthened beams with higher concrete strength (f’c) or greater total rigidity of ETS and transverse reinforcement (Efρf + Eswρsw) showed notable improvements in stiffness and load-carrying capacity, with average increases exceeding 20%. The enhancement in shear strength from increased shear reinforcement stiffness is less pronounced in specimens with high concrete strength than in those with lower strength. ETS-strengthened beams with T-shaped sections exhibit more effective performance and safer failure modes. An enhancement in the a/d ratio reduces the stress in ETS bars but results in more ductile failures. This study also proposes a new analytical formulation for determining the maximum shear resistance of ETS-intervened beams, accounting for all failure modes. The model achieved an average predicted-to-tested shear maximum force ratio of 0.93 along with a coefficient of variation of 26%, demonstrating improved accuracy compared to existing models.
Downloads
[1] Dias, S. J. E., & Barros, J. A. O. (2008). Shear Strengthening of T Cross Section Reinforced Concrete Beams by Near-Surface Mounted Technique. Journal of Composites for Construction, 12(3), 300–311. doi:10.1061/(asce)1090-0268(2008)12:3(300).
[2] Rahal, K. N., & Rumaih, H. A. (2011). Tests on reinforced concrete beams strengthened in shear using near surface mounted CFRP and steel bars. Engineering Structures, 33(1), 53–62. doi:10.1016/j.engstruct.2010.09.017.
[3] Chaallal, O., Mofidi, A., Benmokrane, B., & Neale, K. (2011). Embedded Through-Section FRP Rod Method for Shear Strengthening of RC Beams: Performance and Comparison with Existing Techniques. Journal of Composites for Construction, 15(3), 374–383. doi:10.1061/(asce)cc.1943-5614.0000174.
[4] Le, A. T., Nguyen, T. N., & Van Cao, V. (2023). Bond-slip Behaviour of NSM GFRP Bars in Reinforced Recycled-Aggregate Concrete: Experiments and a Modified Model. Civil Engineering Journal (Iran), 9(2), 233–253. doi:10.28991/CEJ-2023-09-02-01.
[5] Saadah, M., Ashteyat, A., & Murad, Y. (2021). Shear strengthening of RC beams using side near surface mounted CFRP ropes and strips. Structures, 32, 380–390. doi:10.1016/j.istruc.2021.03.038.
[6] He, W., Wang, X., Monier, A., & Wu, Z. (2020). Shear behavior of RC beams strengthened with side-bonded BFRP grids. Journal of Composites for Construction, 24(5), 04020051. doi:10.1061/(ASCE)CC.1943-5614.0001069.
[7] Oudah, F., & Petrie, C. (2025). Reliability-Based Design Aid for Evaluation and FRP Retrofit of Existing RC Bending Members by Considering Project-Specific Conditions. Journal of Composites for Construction, 29(3), 04025020. doi:10.1061/jccof2.cceng-4913.
[8] Leaman Smith, A., Ross, B. E., Cousins, T. E., Ziehl, P., & K C, L. (2025). Evaluation of Two Strengthening Methods for Rural Short-Span Precast Concrete Bridges in South Carolina. Journal of Structural Design and Construction Practice, 30(1), 04024084. doi:10.1061/jsdccc.sceng-1311.
[9] Cao, V. Van. (2025). Effects of CFRP U-Wraps on the Behavior of NSM GFRP Retrofitted Reinforced Concrete Beams. Journal of Composites for Construction, 29(1), 04024087. doi:10.1061/jccof2.cceng-4884.
[10] Djamaluddin, R., Irmawaty, R., Fakhruddin, & Yamaguchi, K. (2024). Flexural Behavior of Repaired Reinforced Concrete Beams Due to Corrosion of Steel Reinforcement Using Grouting and FRP Sheet Strengthening. Civil Engineering Journal (Iran), 10(1), 222–233. doi:10.28991/CEJ-2024-010-01-014.
[11] Nassif, N., Talha Junaid, M., Maalej, M., Altoubat, S., & Barakat, S. A. (2024). Durability of Fiber-Reinforced Polymer (FRP) Bars: Progress, Innovations and Challenges Based on Bibliometric Analysis. Civil Engineering Journal (Iran), 10, 136–173. doi:10.28991/CEJ-SP2024-010-09.
[12] Bui, L. V. H., & Stitmannaithum, B. (2020). Prediction of shear contribution for the FRP strengthening systems in RC beams: A simple bonding-based approach. Journal of Advanced Concrete Technology, 18(10), 600–617. doi:10.3151/JACT.18.600.
[13] Breveglieri, M., Aprile, A., & Barros, J. A. O. (2014). Shear strengthening of reinforced concrete beams strengthened using embedded through section steel bars. Engineering Structures, 81, 76–87. doi:10.1016/j.engstruct.2014.09.026.
[14] Bui, L. V. H., Stitmannaithum, B., & Ueda, T. (2020). Experimental Investigation of Concrete Beams Strengthened with Embedded Through-Section Steel and FRP Bars. Journal of Composites for Construction, 24(5), 4020052. doi:10.1061/(asce)cc.1943-5614.0001055.
[15] Valerio, P., Ibell, T. J., & Darby, A. P. (2009). Deep embedment of FRP for concrete shear strengthening. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 162(5), 311–321. doi:10.1680/stbu.2009.162.5.311.
[16] Mofidi, A., Chaallal, O., Benmokrane, B., & Neale, K. (2012). Experimental Tests and Design Model for RC Beams Strengthened in Shear Using the Embedded Through-Section FRP Method. Journal of Composites for Construction, 16(5), 540–550. doi:10.1061/(asce)cc.1943-5614.0000292.
[17] Breveglieri, M., Aprile, A., & Barros, J. A. O. (2015). Embedded Through-Section shear strengthening technique using steel and CFRP bars in RC beams of different percentage of existing stirrups. Composite Structures, 126, 101–113. doi:10.1016/j.compstruct.2015.02.025.
[18] Breveglieri, M., Barros, J. A. O., Aprile, A., & Ventura-Gouveia, A. (2016). Strategies for numerical modeling the behavior of RC beams strengthened in shear using the ETS technique. Engineering Structures, 128, 296–315. doi:10.1016/j.engstruct.2016.09.027.
[19] Bui, L. V. H., Stitmannaithum, B., & Jongvivatsakul, P. (2020). Comprehensive investigation on bond mechanism of embedded through-section fiber-reinforced polymer bars to concrete for structural analysis. Journal of Building Engineering, 29, 101180. doi:10.1016/j.jobe.2020.101180.
[20] Bui, L. V. H., Stitmannaithum, B., & Ueda, T. (2020). Simulation of concrete beams strengthened by embedded through-section steel and GFRP bars with newly developed bond model. Journal of Advanced Concrete Technology, 18(7), 364–385. doi:10.3151/jact.18.364.
[21] Bui, L. V. H., & Nguyen, P. T. (2022). Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars. Frontiers of Structural and Civil Engineering, 16(7), 843–857. doi:10.1007/s11709-022-0834-0.
[22] Godat, A., Chaallal, O., & Neale, K. W. (2013). Nonlinear finite element models for the embedded through-section FRP shear-strengthening method. Computers and Structures, 119, 12–22. doi:10.1016/j.compstruc.2012.12.016.
[23] ACI Committee 318. (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute (ACI), Farmington Hills, United States.
[24] ACI Committee 440.1R-15. (2002). Guide for the Design and Construction of Structural Concrete Reinforced with Firber-Reinforced Polymer (FRP) Bars. American Concrete Institute (ACI), Farmington Hills, United States.
[25] JSCE. (1997). Recommendations for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Japan Society of Civil Engineers (JSCE), Tokyo, Japan.
[26] ANSYS. (2024). Finite Element Computer Software for Nonlinear Structural Analysis, Version 24R2. Canonsburg, , United States.
[27] TIS20-2543. (2000). Steel Bars for Reinforced Concrete: Round Bars. TIS20-2543. Thai Industrial Standards Institute (TISI), Bangkok, Thailand. (In Thai).
[28] TIS24-2548. (2003). Steel Bars for Reinforced Concrete: Round Bars. Thai Industrial Standards Institute (TISI), Bangkok, Thailand. (In Thai).
[29] Hognestad, E., Hanson, N. W., & McHenry, D. (1955). Concrete Stress Distribution in Ultimate Strength Design. ACI Journal Proceedings, 52(12), 455–479. doi:10.14359/11609.
[30] Willam, K. J., & Warnke, E. P. (1975). Constitutive Models for the Triaxial Behavior of Concrete. Proceedings of IABSE, Structural Engineering Report 19, Section III, 1-30.
[31] Fédération Internationale du Béton (FIB). (2010). fib Model Code for Concrete Structures 2010. Lausanne, Switzerland.
[32] Jirawattanasomkul, T., Dawei, Z., & Ueda, T. (2013). Prediction of the post-peak behavior of reinforced concrete columns with and without FRP-jacketing. Engineering Structures, 56, 1511–1526. doi:10.1016/j.engstruct.2013.05.049.
[33] Leung, C. K. Y., Chen, Z., Lee, S., Ng, M., Xu, M., & Tang, J. (2007). Effect of Size on the Failure of Geometrically Similar Concrete Beams Strengthened in Shear with FRP Strips. Journal of Composites for Construction, 11(5), 487–496. doi:10.1061/(asce)1090-0268(2007)11:5(487).
[34] Benzeguir, Z. E. A., El-Saikaly, G., & Chaallal, O. (2020). Size Effect of RC T-Beams Strengthened in Shear with Externally Bonded CFRP L-Shaped Laminates. Journal of Composites for Construction, 24(4), 04020031. doi:10.1061/(asce)cc.1943-5614.0001045.
[35] Li, W., & Leung, C. K. Y. (2016). Shear Span–Depth Ratio Effect on Behavior of RC Beam Shear Strengthened with Full-Wrapping FRP Strip. Journal of Composites for Construction, 20(3), 04015067. doi:10.1061/(asce)cc.1943-5614.0000627.
[36] Triantafillou, T. C. (1998). Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Structural Journal, 95(2), 107–115. doi:10.14359/531.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














