Behavior of Full-Scale One-Way Semi-Precast Concrete Slabs with Varying Sizes and Shear Connectors
Downloads
This study investigates the structural performance of semi-precast concrete slabs (SPCSs), an innovative hybrid construction system that integrates factory-produced precast concrete units with a cast-in-place (CIP) concrete topping to create a composite structural element. This system offers notable advantages in terms of construction acceleration, improved quality control, and reduced labor requirements, as the precast unit serves as both a load-bearing component and a permanent formwork. To evaluate the structural behavior of the SPCSs, an experimental program was conducted on seven full-scale, one-way slab specimens with varying span lengths (4.75 m and 6.0 m), precast unit thicknesses (80 mm and 100 mm), and shear connector geometries (rectangular and triangular). A control slab without shear connectors was also tested to establish a baseline for comparison. The results demonstrated that the inclusion of shear connectors significantly enhanced structural performance. Specifically, the ultimate load capacity increased by 186.4%, and the cracking load increased by 220% compared to the control specimen. Rectangular connectors proved more effective than triangular ones in minimizing interface slip and enhancing ductility. The initial stiffness increased by 163.95%, while the energy dissipation capacity improved by 411.35%. Although variations in span length and topping thickness had relatively minor effects, the presence and geometry of shear connectors played a decisive role in ensuring effective composite action. All reinforced slabs exhibited flexural failure modes, indicating strong bonding and interaction between the precast and cast-in-place (CIP) concrete layers, whereas the control slab experienced premature failure due to interlayer debonding. Theoretical equations based on ACI 318-19 were used to estimate the nominal flexural capacities of the hybrid SPCS slabs, showing reliable agreement with the experimental results. These findings demonstrated the importance of shear connector design in maximizing the load-bearing capacity, ductility, and structural stiffness of SPCS systems under both service and extreme loading conditions.
Downloads
[1] Mohamed, M. S., Thamboo, J. A., & Jeyakaran, T. (2020). Experimental and numerical assessment of the flexural behaviour of semi-precast-reinforced concrete slabs. Advances in Structural Engineering, 23(9), 1865-1879. doi:10.1177/1369433220904011.
[2] Xiong, F., Zou, H., & Lu, Y. (2023). A macro element of demountable bolted steel-concrete composite connections for a novel prefabricated concrete sandwich wall panel structure. Engineering Structures, 293, 116571. doi:10.1016/j.engstruct.2023.116571.
[3] Pu, W., Zhang, Q., Jia, Q., Wei, W., & Li, B. (2024). Full-scale load testing for evaluating crack performance in precast prestressed concrete communication towers with annular sections. Results in Engineering, 24, 103395. doi:10.1016/j.rineng.2024.103395.
[4] Ristic, J., Misini, L., Ristic, D., & Hristovski, V. (2024). Upgrading of Precast Roof Beam–Column Connections with Seismic Safety Key Devices. Civil Engineering Journal (Iran), 10(5), 1437–1454. doi:10.28991/CEJ-2024-010-05-06.
[5] Nodehi, M., & Mohamad Taghvaee, V. (2022). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures & Engineering, 7(1), 3-22. doi:10.1007/s40940-021-00155-9.
[6] Chen, G. Q., Wu, H., Cheng, Y. H., & Lu, J. X. (2025). Comparative studies on blast resistance of precast concrete composite and cast-in-place slabs. Journal of Building Engineering, 113077. doi:10.1016/j.jobe.2025.113077.
[7] Al-Fasih, M. Y. M., Edris, W. F., Elbialy, S., Marsono, A. K., & Al Sayed, A. A. K. A. (2024). Lateral Displacement Behavior of IBS Precast Concrete Elements Reinforced with Dual System. Civil Engineering Journal (Iran), 10(1), 317–335. doi:10.28991/CEJ-2024-010-01-020.
[8] Hidayawanti, R., Latief, Y., & Gaspersz, V. (2024). Risk-Based Method-Technology Integration on Spun Pile Production for Product and Service Quality. Civil Engineering Journal (Iran), 10(11), 3683–3698. doi:10.28991/CEJ-2024-010-11-015.
[9] Afefy, H. M., Heniegal, A. M., Baraghith, A. T., Ibrahim, O. M. O., & Eldwiny, M. E. A. (2024). Flexural Behavior of RC Continuous Beams Strengthened by Cementitious Composite Materials. Civil Engineering Journal (Iran), 10(9), 2839–2858. doi:10.28991/CEJ-2024-010-09-05.
[10] Fan, C., Binchao, D., & Yin, Y. (2023). Hierarchical structure and transfer mechanism to assess the scheduling-related risk in construction of prefabricated buildings: An integrated ISM–MICMAC approach. Engineering, Construction and Architectural Management, 30(7), 2991-3013. doi:10.1108/ECAM-09-2021-0785.
[11] Putra, W. T., Setiawan, A. F., Saputra, A., Satyarno, I., & Pratama, H. Y. (2024). Frictional Axial Resistance of Clamped Split Pocket Mechanism Steel Structural Joint: An Experimental Study. Civil Engineering Journal (Iran), 10(9), 2870–2887. doi:10.28991/CEJ-2024-010-09-07.
[12] Tam, V. W. Y., Fung, I. W. H., Sing, M. C. P., & Ogunlana, S. O. (2015). Best practice of prefabrication implementation in the Hong Kong public and private sectors. Journal of Cleaner Production, 109, 216–231. doi:10.1016/j.jclepro.2014.09.045.
[13] Kadir, M. R. A., Lee, W. P., Jaafar, M. S., Sapuan, S. M., & Ali, A. A. A. (2006). Construction performance comparison between conventional and industrialised building systems in Malaysia. Structural Survey, 24(5), 412-424. doi:10.1108/02630800610712004.
[14] Akmam Syed Zakaria, S., Gajendran, T., Rose, T., & Brewer, G. (2018). Contextual, structural and behavioural factors influencing the adoption of industrialized building systems: a review. Architectural Engineering and Design Management, 14(1–2), 3–26. doi:10.1080/17452007.2017.1291410.
[15] Shen, L. Y., Tam, V. W. Y., & Li, C. Y. (2009). Benefit analysis on replacing in situ concreting with precast slabs for temporary construction works in pursuing sustainable construction practice. Resources, Conservation and Recycling, 53(3), 145-148. doi:10.1016/j.resconrec.2008.11.001.
[16] Lee, J. D., Yoon, J. K., & Kang, T. H.-K. (2016). Combined half precast concrete slab and post-tensioned slab topping system for basement parking structures. Journal of Structural Integrity and Maintenance, 1(1), 1–9. doi:10.1080/24705314.2016.1153281.
[17] Cho, K., Shin, Y., & Kim, T. (2017). Effects of Half-Precast Concrete Slab System on Construction Productivity. Sustainability, 9(7), 1268. doi:10.3390/su9071268.
[18] Youn, S.-G., & Cho, G.-D. (2011). Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details. Journal of the Korea Concrete Institute, 23(5), 657–665. doi:10.4334/jkci.2011.23.5.657.
[19] Figueiredo Filho, J. R., & Shiramizu, A. K. H. (2011). Design, production, and execution of buildings with precast lattice slabs. IBRACON Journal of Structures and Materials, 4(1), 123–146. doi:10.1590/s1983-41952011000100007. (In Portuguese).
[20] Löfgren, I. (2003). Lattice Girder Elements-Investigation of Structural Behaviour and Performance Enhancements. Nordic Concret Research, 1, 85-104.
[21] Qi, J., & Yang, H. C. (2021). Improvement of a truss-reinforced, half-concrete slab floor system for construction sustainability. Sustainability (Switzerland), 13(7), 3731. doi:10.3390/su13073731.
[22] Mahmutović, P. A., & Žuna, Š. (2011). Trends in the improvement of lattice girders production technology in steelwork zenica. 15th International Research/Expert Conference, Trends in the Development of Machinery and Associated Technology (TMT 2011), 12-18 September, 2011, Prague, Czech.
[23] Newell, S., & Goggins, J. (2019). Experimental study of hybrid precast concrete lattice girder floor at construction stage. Structures, 20, 866–885. doi:10.1016/j.istruc.2019.06.022.
[24] Momayez, A., Ehsani, M. R., Ramezanianpour, A. A., & Rajaie, H. (2005). Comparison of methods for evaluating bond strength between concrete substrate and repair materials. Cement and Concrete Research, 35(4), 748–757. doi:10.1016/j.cemconres.2004.05.027.
[25] Júlio, E. N. B. S., Branco, F. A. B., & Silva, V. D. (2004). Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface. Construction and Building Materials, 18(9), 675–681. doi:10.1016/j.conbuildmat.2004.04.023.
[26] Ashteyat, A. M., Al Rjoub, Y. S., Obaidat, A. T., & Dagamseh, H. (2019). Strengthening and repair of one-way and two-way self-compacted concrete slabs using near-surface-mounted carbon-fiber-reinforced polymers. Advances in Structural Engineering, 22(11), 2435–2448. doi:10.1177/1369433219843649.
[27] Asad, M., Dhanasekar, M., Zahra, T., & Thambiratnam, D. (2019). Characterisation of polymer cement mortar composites containing carbon fibre or auxetic fabric overlays and inserts under flexure. Construction and Building Materials, 224, 863–879. doi:10.1016/j.conbuildmat.2019.07.120.
[28] Thamboo, J. A., & Dhanasekar, M. (2015). Characterisation of thin layer polymer cement mortared concrete masonry bond. Construction and Building Materials, 82, 71–80. doi:10.1016/j.conbuildmat.2014.12.098.
[29] ACI 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Farmington Hills, United States. doi:10.14359/51716937.
[30] Mohamed, M. S., Thamboo, J. A., & Jeyakaran, T. (2020). Experimental and numerical assessment of the flexural behaviour of semi-precast-reinforced concrete slabs. Advances in Structural Engineering, 23(9), 1865–1879. doi:10.1177/1369433220904011.
[31] Hillebrand, M., Sinning, A., & Hegger, J. (2024). Shear and interface shear fatigue of semi-precast slabs with lattice girders under cyclic loading. Structural Concrete, 25(6), 4895–4917. doi:10.1002/suco.202400219.
[32] Zając, J., Drobiec, Ł., Jasiński, R., Mazur, W., Grzyb, K., & Kisiołek, A. (2020). Research on semi-precast prestressed concrete slab under short-term and long-term load. MATEC Web of Conferences, 323, 02001. doi:10.1051/matecconf/202032302001.
[33] Lee, Y. L., Karim, a. T. a, Ismail, a R., Chai, T. J., Koh, H. B., Nagapan, S., & Yeoh, D. (2013). Deflection Of Reinforced Concrete Half-Slab. International Journal of Construction Technology and Management, 1(1), 6–12.
[34] Irawan, D., Habieb, A. B., Iranata, D., Suprobo, P., & Raka, I. G. P. (2024). Experimental Study of Two-way Half Slab Precast Concrete using Rextangular Rigid Connection. Civil Engineering Dimension, 26(1), 63–70. doi:10.9744/ced.26.1.63-70.
[35] Supriyadi, B., Siswosukarto, S., & Effi, C. P. Y. P. (2017). The Behavior Semi-precast Slab under Dynamic Load. Procedia Engineering, 171, 1204–1213. doi:10.1016/j.proeng.2017.01.488.
[36] Hillebrand, M., & Hegger, J. (2023). Shear and interface shear of semi-precast slabs with lattice girders under monotonic loading. Structural Concrete, 24(2), 3055–3076. doi:10.1002/suco.202200423.
[37] Murtadho, M. (2017). Flexural Strength Analysis of Semi-French Curved Tile Flooring System. Ph.D. Thesis, Riau University, Pekanbaru, Indonesia. (In Indonesian).
[38] Saheed, S., Aziz, F. N. A. A., Amran, M., Vatin, N., Fediuk, R., Ozbakkaloglu, T., Murali, G., & Mosaberpanah, M. A. (2020). Structural performance of shear loaded precast EPS-foam concrete half-shaped slabs. Sustainability (Switzerland), 12(22), 1-17. doi:10.3390/su12229679.
[39] Yun, Y., Jiang, J., & Chen, P. (2022). Flexural Behavior of Lattice Girder Slabs with Different Connections: Experimental Study. Advances in Civil Engineering, 2022(1). doi:10.1155/2022/7722668.
[40] Zajac, J., Drobiec, Ł., Jasiński, R., Wieczorek, M., Mazur, W., Grzyb, K., & Kisiołek, A. (2021). The behaviour of half-slabs and hollow-core slab in four-edge supported conditions. Applied Sciences (Switzerland), 11(21), 10354. doi:10.3390/app112110354.
[41] Cao, T. A., Nguyen, M. T., Pham, T. H., & Nguyen, D. N. (2023). Experimental Study on Flexural Behavior of RC–UHPC Slabs with EPS Lightweight Concrete Core. Buildings, 13(6), 1372. doi:10.3390/buildings13061372.
[42] Kim. (2015). Crack Width Control on Concrete Slab using Half-Depth Precast Panels with Loop Joints. Journal of the Korean Society of Civil Engineers, 35(1), 19. doi:10.12652/ksce.2015.35.1.0019.
[43] Szydlowski, R., & Szreniawa, M. (2017). New Concept of Semi-precast Concrete Slab on Pre-tensioned Boards. IOP Conference Series: Materials Science and Engineering, 245, 022090. doi:10.1088/1757-899x/245/2/022090.
[44] Bozzo, L. M., & Torres, Ll. (2004). A proposed semi-prefabricated prestressed composite slab. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 157(5), 309–317. doi:10.1680/stbu.157.5.309.46673.
[45] Hassan, M. K., Subramanian, K. B., Saha, S., & Sheikh, M. N. (2021). Behaviour of prefabricated steel-concrete composite slabs with a novel interlocking system–Numerical analysis. Engineering Structures, 245, 112905. doi:10.1016/j.engstruct.2021.112905.
[46] Ha, S. S., Kim, S. H., Lee, M. S., & Moon, J. H. (2014). Performance evaluation of semi precast concrete beam-column connections with U-shaped strands. Advances in Structural Engineering, 17(11), 1585–1600. doi:10.1260/1369-4332.17.11.1585.
[47] Mokhtar, R., Ibrahim, Z., Jumaat, M. Z., Abd. Hamid, Z., & Abdul Rahim, A. H. (2020). Behaviour of semi-rigid precast beam-to-column connection determined using static and reversible load tests. Measurement: Journal of the International Measurement Confederation, 164, 108007. doi:10.1016/j.measurement.2020.108007.
[48] ACI Committee 211. (1996). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute (ACI), Farmington Hills, United States.
[49] ASTM C143/C143M-20. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-20.
[50] BS EN 12390-3:2019-TC. (2019). Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standards Institution (BSI), London, United Kingdom.
[51] ASTM C150/C150M-19. (2019). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-19.
[52] ASTM C33/C33M-23. (2024). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-23.
[53] ASTM A615/A615M-24. (2024). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-24.
[54] Liu, Y. L., Huang, J. Q., Chong, X., & Ye, X. G. (2021). Experimental investigation on flexural performance of semi-precast reinforced concrete one-way slab with joint. Structural Concrete, 22(4), 2243–2257. doi:10.1002/suco.202000676.
[55] Dakhil, A. J., & Shuber, M. A. (2024). Flexural Performance of Reinforced Concrete Beams with Openings Strengthened by Varying Thickness Steel Tubes. Annales de Chimie: Science Des Materiaux, 48(1), 17–25. doi:10.18280/acsm.480103.
[56] Alahdal, A. (2024). In-plane Cyclic Response of Flexural-Dominated Partially Grouted Reinforced Masonry Shear Walls with Boundary Elements. PhD Thesis, Concordia University, Montreal, Canada.
[57] Mahmoud, M. R. I., Wang, X., Altayeb, M., Al-Shami, H. A. M., Ali, Y. M. S., & Moussa, A. M. A. (2024). Experimental and numerical study of the flexural behaviour of semi-precast slab reinforced with prestressed FRP bars. Structures, 62, 106197. doi:10.1016/j.istruc.2024.106197.
[58] Naser, K. Z., Almayah, A. A., & Abbas, A. M. (2025). Shear strength and behavior of eco-friendly RC corbels. Results in Engineering, 25, 104101. doi:10.1016/j.rineng.2025.104101.
[59] Ojaimi, M. F., Alabdulhady, M. Y., & Naser, K. Z. (2024). Influence of Concrete Compressive Strength on CFRP Strengthening and Repairing of RC Two-Way Slabs. Journal of Engineering (United Kingdom), 2024(1), 2166919. doi:10.1155/2024/2166919.
[60] Türer, A., Mercimek, Ö., Anıl, Ö., & Erbaş, Y. (2023). Experimental and numerical investigation of punching behavior of two-way RC slab with different opening locations and sizes strengthened with CFRP strip. Structures, 49, 918–942. doi:10.1016/j.istruc.2023.01.157.
[61] Ewees, M. H., Gabr, A. S. A., & Farrag, M. R. (2024). Effect of tension and compression flexural reinforcement on punching shear strength of reinforced concrete flat slab. Alexandria Engineering Journal, 99, 282–302. doi:10.1016/j.aej.2024.05.019.
[62] Said, M., Mahmoud, A. A., & Salah, A. (2020). Performance of reinforced concrete slabs under punching loads. Materials and Structures/Materiaux et Constructions, 53(4), 68. doi:10.1617/s11527-020-01509-5.
[63] Ismail El-kassas, A., Ali Bashandy, A., Mohamed Eied, F. A., & Abd El-Salam Arab, M. (2022). Effect of fibers type on the behavior of fibrous high-strength self-compacted reinforced concrete flat slabs in punching with and without shear reinforcement. Construction and Building Materials, 360, 129625. doi:10.1016/j.conbuildmat.2022.129625.
[64] International Federation for Structural Concrete (fib). (2013). fib Model Code for Concrete Structures 2010. John Wiley & Sons, Hoboken, United States. doi:10.1002/9783433604090.
[65] EN 1992-1-1 (2004) Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization, Brussels, Belgium.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














