Mechanical Performance of Volcanic Ash Concrete Showing Modulus Reduction with Strength Retention
Downloads
This study aims to evaluate the mechanical behavior of concrete that incorporates 51.3% raw volcanic ash into its structure, focusing on its static elasticity modulus and compressive strength. Cylindrical concrete samples were prepared via the mix design commonly used in practice in Baños, Tungurahua, Ecuador. Three curing methods were applied: immersion, water spraying, and no curing. Compressive strength tests were conducted at 3, 7, 14, 21, and 28 days, whereas the static modulus was measured at 28 days following ASTM C469. Despite the high use of ash in the mixture, the mixtures achieved adequate compressive strengths for structural applications, reaching 28.05 MPa. However, a significant reduction in the static modulus was observed, with experimental values of approximately 7.06 GPa, whereas the value of 24.89 GPa was predicted by the equations given in ACI318. The use of raw volcanic ash in structural mixes requires modifications to deformation and stiffness calculations to ensure seismic performance, suggesting the need to review local regulations on traditional mixes. Based on the experimental data, an alternative empirical model, the VAM model, was proposed to better predict the elastic modulus of concrete with high volcanic ash content. The findings reveal a dual function of ash, acting as a pozzolanic material and as a low-density aggregate, highlighting the need to adjust the design equations when raw volcanic ash is used. This work contributes to the sustainable design of concrete mixtures in seismic regions.
Downloads
[1] Yip, C. L., Mohamad, H. M., & Ahmad, H. (2023). Fracture Energy Measurement in Different Concrete Grades. International Journal of Integrated Engineering, 15(2), 143–150. doi:10.30880/ijie.2023.15.02.014.
[2] Gagg, C. R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis, 40, 114–140. doi:10.1016/j.engfailanal.2014.02.004.
[3] Bedoya, C., & Dzul, L. (2015). Concrete with recycled aggregates as an urban sustainability project. Revista Ingeniería de Construcción, 30(2), 99–108. doi:10.4067/s0718-50732015000200002. (In Spanish).
[4] INEC. (2020). Encuesta Nacional de Edificaciones. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Economicas/Encuesta_Edificaciones/2020/2.%202020_ENED_Principales_resultados.pdf (accessed on September 2025). (In Spanish).
[5] Inel, M., Senel, S. M., & Un, H. (2008). Experimental evaluation of concrete strength in existing buildings. Magazine of Concrete Research, 60(4), 279–289. doi:10.1680/macr.2007.00091.
[6] Hasan, M. S., Karmokar, J., & Mahmood, S. M. F. (2024). Strength and Workability of Concrete Incorporating Volcanic Ash as a Partial Replacement for Cement. Proceedings of the 2nd International Conference on Advances in Civil Infrastructure and Construction Materials (CICM 2023), Volume 2, CICM 2023, Lecture Notes in Civil Engineering, 512, Springer, Cham, Switzerland. doi:10.1007/978-3-031-63280-8_26.
[7] Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165–1171. doi:10.1016/j.cemconres.2004.09.031.
[8] Suárez Avila, Á. E., & Urgilés Cabrera, M. P. (2010). Characterization of Tungurahua volcanic ash for the manufacture of a Cal-pozzolan binder. Ph.D. Thesis, Universidad de Cuenca, Cuenca, Ecuador. Available online: https://dspace.ucuenca.edu.ec/bitstreams/07ac6396-4967-484f-a1e9-794c9923450d/download (accessed on September 2025).
[9] Nayak, D. K., Abhilash, P. P., Singh, R., Kumar, R., & Kumar, V. (2022). Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Cleaner Materials, 6, 100143. doi:10.1016/j.clema.2022.100143.
[10] Volz, J. S., Khayat, K. H., Arezoumandi, M., Drury, J., Sadati, S., Smith, A., & Steele, A. (2014). Recycled concrete aggregate (RCA) for infrastructure elements. No. NUTC R312, Center for Transportation Infrastructure and Safety, Missouri University of Science and Technology, Rolla, United States.
[11] Al-Gburi, S. N. A. (2018). A new approach for nondestructive determination of concrete compressive strength by using radial basis function network. Master Thesis, Near East Univ., Near East University, Ortaköy, Nicosia.
[12] Noguchi, T., Tomosawa, F., Nemati, K. M., Chiaia, B. M., & Fantilli, A. P. (2009). A practical equation for elastic modulus of concrete. ACI Structural Journal, 106(5), 690. doi:10.14359/51663109.
[13] Cañamar Potosi, A. D., & Suárez Merejildo, A. G. (2025). Study on the effects of captive columns in reinforced concrete structures evaluated through seismic performance. Universidad Estatal Península de Santa Elena, La Libertad, Ecuador. (In Spanish).
[14] Fantilli, A. P., & Jóźwiak-Niedźwiedzka, D. (2021). Special Issue: Supplementary Cementitious Materials in Concrete, Part I. Materials, 14(9), 2291. doi:10.3390/ma14092291.
[15] Siddique, R. (2012). Properties of concrete made with volcanic ash. Resources, Conservation and Recycling, 66, 40–44. doi:10.1016/j.resconrec.2012.06.010.
[16] Ekaputri, J. J., Baihaqi, A., & Aji, P. (2011). Mechanical properties of volcanic ash based concrete. Proceedings of International Seminar on Applied Technology, Science, and Arts, 6 December, 2011, Surabaya, Indonesia.
[17] Hossain, K. M. A., & Lachemi, M. (2007). Strength, durability and micro-structural aspects of high performance volcanic ash concrete. Cement and Concrete Research, 37(5), 759–766. doi:10.1016/j.cemconres.2007.02.014.
[18] Lemougna, P. N., Wang, K. tuo, Tang, Q., Nzeukou, A. N., Billong, N., Melo, U. C., & Cui, X. min. (2018). Review on the use of volcanic ashes for engineering applications. Resources, Conservation and Recycling, 137, 177–190. doi:10.1016/j.resconrec.2018.05.031.
[19] Presa, L. (2024). Sustainable cements and concretes made from uncalcined natural materials as a supplementary cementitious material. E.T.S.I. de Minas y Energía (UPM), Madrid, Spain. doi:10.20868/UPM.thesis.83316.
[20] ASTM C618-22. (2023). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. ASTM International, Pennsylvania, United States. doi10.1520/C0618-22 .
[21] Guerrero, K. L. H., Villalobo, M. A., Cienfuegos, W. Á., Gómez, A., Muentes, J. L., Buelvas, V. D., & Salinas, S. V. (2018). Elasticity Module Resistance to Concrete Compression. Universidad Tecnológica de Bolívar, Cartagena, Colombia. (In Spanish). doi:10.13140/RG.2.2.17351.55207.
[22] Ishaq, M. B., Mohammed, A. S., & Mohammed, A. A. (2025). Chemical characterization and performance optimization of waste glass-modified concrete for sustainable construction. Sustainable Chemistry and Pharmacy, 44, 101968. doi:10.1016/j.scp.2025.101968.
[23] Ravindrarajah, R. S., Loo, Y. H., & Tam, C. T. (1987). Recycled concrete as fine and coarse aggregates in concrete. Magazine of Concrete Research, 39(141), 214–220. doi:10.1680/macr.1987.39.141.214.
[24] Odeyemi, S. O., Omoniyi, A. O., Adisa, M. O., Abdulwahab, R., & Akinpelu, M. A. (2024). Response Surface Optimization of Rice and Guinea Corn Husk Ash Blended Concrete. International Journal of Engineering Research in Africa, 68, 31–49. doi:10.4028/p-Tu7AtX.
[25] ASTM C496-02. (2017). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469-02.
[26] ACI 318-19. (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute (ACI), Farmington Hills, United States. doi:10.14359/51716937.
[27] Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., & Veyssière, P. (Eds.). (2001). Encyclopedia of materials: Science and technology (1st ed.). Pergamon, ScienceDirect, Amsterdam, Netherlands.
[28] Kuder, K., Lehman, D., Berman, J., Hannesson, G., & Shogren, R. (2012). Mechanical properties of self-consolidating concrete blended with high volumes of fly ash and slag. Construction and Building Materials, 34, 285–295. doi:10.1016/j.conbuildmat.2012.02.034.
[29] Aditto, F. S., Sobuz, M. H. R., Saha, A., Jabin, J. A., Kabbo, M. K. I., Hasan, N. M. S., & Islam, S. (2023). Fresh, mechanical and microstructural behaviour of high-strength self-compacting concrete using supplementary cementitious materials. Case Studies in Construction Materials, 19, 2395. doi:10.1016/j.cscm.2023.e02395.
[30] Mohamad, S. A., Al-Hamd, R. K. S., & Khaled, T. T. (2020). Investigating the effect of elevated temperatures on the properties of mortar produced with volcanic ash. Innovative Infrastructure Solutions, 5(1), 25. doi:10.1007/s41062-020-0274-4.
[31] ASTM C231-09a. (2010). Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. ASTM International, Pennsylvania, United States. doi:10.1520/C0231-09A.
[32] Salama, T. (2024). Experimental testing of concrete mixes using volcanic ash for bridge construction. Green Buildings and Materials, 2(1). doi:10.58396/gbm020103.
[33] Chakraborty, J., & Banerjee, S. (2016). Replacement of Cement by Fly Ash in Concrete. International Journal of Civil Engineering, 3(8), 58–60. doi:10.14445/23488352/ijce-v3i8p110.
[34] Rosa, M. A., Stanton, J. F., & Eberhard, M. O. (2007). Improving predictions for camber in precast, prestressed concrete bridge girders. No. WA-RD 669.1, Washington State Transportation Center, Federal Highway Administration, Washington, United States.
[35] Játiva, A., Ruales, E., & Etxeberria, M. (2021). Volcanic Ash as a Sustainable Binder Material: An Extensive Review. Materials, 14(5), 1302. doi:10.3390/ma14051302.
[36] Barrientos-Monsalve, E. J. (2020). Behavior of concrete in the presence of fiber and volcanic ash. Mundo FESC, 10(19), 202–214. doi:10.61799/2216-0388.726.
[37] Alghazali, H. H. (2018). Behavior and temporal-based effects of sustainable self-consolidating concrete in bridge structures. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, United States.
[38] Niu, R., Hu, J., Liu, J., Zhang, W., Liu, J., Liu, G., & Xing, F. (2025). Controlled release fertilizer eco-concrete: Utilization of solid waste for the sustainable cleaner products conducive to ecological construction. Construction and Building Materials, 463, 140017. doi:10.1016/j.conbuildmat.2025.140017.
[39] Sulyanova, E. A., Karimov, D. N., & Sobolev, B. P. (2021). Displacements in the Cationic Motif of Nonstoichiometric Fluorite Phases Ba1−xRxF2+x as a Result of the Formation of {Ba8[R6F68–69]} Clusters: III. Defect Cluster Structure of the Nonstoichiometric Phase Ba0.69La0.31F2.31 and Its Dependence on Heat Treatment . Crystals, 11(4), 447. doi:10.3390/cryst11040447.
[40] Galeas Arias, E. D., & Guzmán Chávez, F. A. (2020). Proposal for concrete dosage replacing cement in different weight percentages with volcanic ash from Tungurahua; identifying the influence of using the fine, coarse and complete fraction. Bachelor Thesis, Escuela Politécnica Nacional, Quito, Ecuador. (In Spanish).
[41] Amziane, S., Merta, I., & Page, J. (2023). Bio-Based Building Materials: Proceedings of ICBBM 2023. Springer Nature, Cham, Switzerland. doi:10.1007/978-3-031-33465-8.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














