Comparison Between the Calcium-Based Stabilizer and Non-Organic Agents on the Stabilization of Contaminated Soil
Downloads
This study was conducted to investigate the properties of nickel- and copper-contaminated soil and to determine the potential use of calcium stabilizers and inorganic agents as soil improvement methods. The soil was classified as loamy sand (SM) with a low plasticity index (PI = 4%), medium permeability, and high silica content (>33%). X-ray fluorescence (XRF) testing revealed nickel oxide concentrations of 1.5% and copper oxide concentrations of 2.5% in the soil. Nickel and copper contamination based on added nitrate salts was estimated at 1,500 ppm and 2,500 ppm, respectively. X-ray Diffraction (XRD) results showed that quartz and kaolinite were the most abundant, and the contaminants were likely present in an amorphous or surface-adsorbed manner. Unconfined Compressive Strength (UCS) results indicated a significant improvement in compressive strength: from 96 kPa (2% cement, 7 days) to over 12,445 kPa (7% cement, 28 days). The 20% fly ash yielded a strength of 934.5 kPa after 28 days, due to natural pozzolanic reaction and mineral adsorption. Overall, strength improved, and stability was achieved with increased curing time. These results demonstrate that cement and fly ash improved both the mechanical properties and environmental performance of sandy soils contaminated with heavy metals. However, the accelerated strength improvement for cement was significantly greater (over 12,445 kPa) than for fly ash (934.5 kPa, with 20% fly ash) after 28 days of curing. This result suggests that cement-based materials have superior load-bearing performance in applications, but fly ash may be less effective and potentially more environmentally friendly.
Downloads
[1] Faisal M., L., Sachit, D. E., & Faisal M., F. (2024). Cadmium removal efficiency from synthetic wastewater using sawdust as a sustainable adsorbent. Desalination and Water Treatment, 318, 100321. doi:10.1016/j.dwt.2024.100321.
[2] Liu, M., Qiao, P., Shan, Y., Zhang, Z., Pan, P., & Li, Y. (2024). Migration and Accumulation Simulation Prediction of PPCPs in Urban Green Space Soil Irrigated with Recycled Water: A Review. Journal of Hazardous Materials, 476. doi:10.1016/j.jhazmat.2024.135037.
[3] Saeed, K., Al-Khyat, S., Hacheem, Z. A., & Fartosy, S. H. (2024). Evaluating the Efficiency of Alkaline Activator with Silica-Rich Wastes in Stabilizing Cadmium-Contaminated Soil. Civil Engineering Journal (Iran), 10(7), 2123–2143. doi:10.28991/CEJ-2024-010-07-04.
[4] Auty, K. M., Zaman, R. U., & Kamal, N. N. (2024). Innovative Approaches to Stability of Embankment-A Role of Chemical Stabilization in Erosion Mitigation. Ph.D. Thesis, Islamic University of Technology (IUT), Gazipur City, Bangladesh.
[5] Bilal, M., Alshammari, A. M., & Ali, A. (2023). Binder-Based Remediation of Heavy Metal Contaminated Soils: A Review of Solidification/Stabilization Methods. Knowledge-Based Engineering and Sciences, 4(3), 17–34. doi:10.51526/kbes.2023.4.3.17-34.
[6] Saeed, K. A., Kassi, K. A., Nur, H., & Al-Hashimi, S. A. M. (2020). Molecular Characteristics of Cement-Lime Treated contaminated- Lateritic Clay Soil. IOP Conference Series: Materials Science and Engineering, 870(1), 12082. doi:10.1088/1757-899X/870/1/012082.
[7] Shukla, B. K., Gupta, A., Gowda, S., & Srivastav, Y. (2023). Constructing a greener future: A comprehensive review on the sustainable use of fly ash in the construction industry and beyond. Materials Today: Proceedings, 93, 257–264. doi:10.1016/j.matpr.2023.07.179.
[8] Cui, W., Li, X., Duan, W., Xie, M., & Dong, X. (2023). Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review. Environmental Geochemistry and Health, 45(7), 4127–4163. doi:10.1007/s10653-023-01522-x.
[9] Mohammed, A. A., Nahazanan, H., Nasir, N. A. M., Huseien, G. F., & Saad, A. H. (2023). Calcium-Based Binders in Concrete or Soil Stabilization: Challenges, Problems, and Calcined Clay as Partial Replacement to Produce Low-Carbon Cement. Materials, 16(5), 2020. doi:10.3390/ma16052020.
[10] Alterary, S. S., & Marei, N. H. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University - Science, 33(6), 101536. doi:10.1016/j.jksus.2021.101536.
[11] Auied, H. G., Dhahir, S. A., & Sultan, M. A. (2025). Estimate the Concentrations of Some Heavy Metals in Industrial Wastewater in Al-Dora Oil Refinery. Journal of Engineering, 31(2), 34–47. doi:10.31026/j.eng.2025.02.03.
[12] Diary, M. S., & Abdulhussein, F. M. (2024). Pollution Assessment of the Tigris River Sediments Resulting from Wastewater Discharge in Baghdad, Iraq. The Iraqi Geological Journal, 47–61. doi:10.46717/igj.57.2a.4ms-2024-7-14.
[13] Saleem, A., & Abdullah, E. J. (2024). Assessment of Particulates and Heavy Metals Concentration Distribution in Ambient Air around Al-Dora Refinery in Baghdad City, Iraq. Iraqi Geological Journal, 57(2), 149-160. doi:10.46717/igj.57.2E.12ms-2024-11-21.
[14] Li, G., Li, M., Zhang, X., Cao, P., Jiang, H., Luo, J., & Jiang, T. (2022). Hydrothermal synthesis of zeolites-calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)2-NaOH for aqueous heavy metals removal. International Journal of Mining Science and Technology, 32(3), 563–573. doi:10.1016/j.ijmst.2022.03.001.
[15] Yazıcı, E., & Unsever, Y. S. (2024). Investigation of Cement and Fly Ash on the Improvement of Fine Sand Soil. Applied Sciences (Switzerland), 14(7), 2908 10 3390 14072908. doi:10.3390/app14072908.
[16] Ahmed, M. I., & Abed, A. H. (2025). Mechanical Properties of Cement-Stabilized Sandy Soils Modified with Consoil. Civil Engineering Journal (Iran), 11(1), 185–200. doi:10.28991/CEJ-2025-011-01-011.
[17] Al-Neami, M. A., Al-Soudany, K. Y. H., & Tarsh, N. M. (2021). The Potential Influence of Using Nanomaterials Additives on Unconfined Compressive Strength of Soft Soil. IOP Conference Series: Earth and Environmental Science, 856(1), 012008. doi:10.1088/1755-1315/856/1/012008.
[18] Abhishek, A., GuhaRay, A., Hata, T., & Abuel-Naga, H. (2025). Microstructural Characterization of Expansive Soil Stabilized with Coconut Husk Ash: A Multi-Technique Investigation into Mineralogy, Pore Architecture, and Surface Interactions. Minerals, 15(5), 516. doi:10.3390/min15050516.
[19] Al-saffar, F. Y., Wong, L. S., & Paul, S. C. (2023). An Elucidative Review of the Nanomaterial Effect on the Durability and Calcium-Silicate-Hydrate (C-S-H) Gel Development of Concrete. Gels, 9(8), 613. doi:10.3390/gels9080613.
[20] Salih, M. M., Jawad, F. W., Al-Ameri, A. F. I., & Abdulhameed, A. A. (2022). Geotechnical correlations of soil properties in Hilla City - Iraq. Open Engineering, 12(1), 729–742. doi:10.1515/eng-2022-0335.
[21] Regassa, A., Kibret, K., Selassie, Y. G., Kiflu, A., & Tena, W. (2023). Soil Properties. In: Beyene, S., Regassa, A., Mishra, B.B., Haile, M. (eds) The Soils of Ethiopia. World Soils Book Series, Springer, Cham, Switzerland. doi:10.1007/978-3-031-17012-6_7.
[22] Moreno-Maroto, J. M., Alonso-Azcárate, J., & O’Kelly, B. C. (2021). Review and critical examination of fine-grained soil classification systems based on plasticity. Applied Clay Science, 200, 105955. doi:10.1016/j.clay.2020.105955.
[23] Majeed, B. K., Shwan, D. M. S., & Rashid, K. A. (2025). A review on environmental contamination of petroleum hydrocarbons, its effects and remediation approaches. Environmental Science: Processes & Impacts, 27(3), 526–548. doi:10.1039/d4em00548a.
[24] Webb, J. A., Jotheri, J., & Fensham, R. J. (2024). Springs of the Arabian Desert: Hydrogeology and Hydrochemistry of Abu Jir Springs, Central Iraq. Water (Switzerland), 16(17), 2491. doi:10.3390/w16172491.
[25] Attiya, A. A., & Jones, B. G. (2020). Assessment of mineralogical and chemical properties of airborne dust in Iraq. SN Applied Sciences, 2(9), 1614. doi:10.1007/s42452-020-03326-5.
[26] Tavares, T. R., de Almeida, E., Junior, C. R. P., Guerrero, A., Fiorio, P. R., & de Carvalho, H. W. P. (2023). Analysis of Total Soil Nutrient Content with X-ray Fluorescence Spectroscopy (XRF): Assessing Different Predictive Modeling Strategies and Auxiliary Variables. AgriEngineering, 5(2), 680–697. doi:10.3390/agriengineering5020043.
[27] Risoluti, R., Gullifa, G., Barone, L., Papa, E., & Materazzi, S. (2022). On-Line Thermally Induced Evolved Gas Analysis: An Update—Part 1: EGA-MS. Molecules, 27(11), 3518. doi:10.3390/molecules27113518.
[28] Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology and Innovation, 30, 103043. doi:10.1016/j.eti.2023.103043.
[29] Padhye, L. P., Srivastava, P., Jasemizad, T., Bolan, S., Hou, D., Shaheen, S. M., Rinklebe, J., O’Connor, D., Lamb, D., Wang, H., Siddique, K. H. M., & Bolan, N. (2023). Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. Journal of Hazardous Materials, 455, 131575. doi:10.1016/j.jhazmat.2023.131575.
[30] Genua, F., Lancellotti, I., & Leonelli, C. (2025). Geopolymer-Based Stabilization of Heavy Metals, the Role of Chemical Agents in Encapsulation and Adsorption: Review. Polymers, 17(5), 670. doi:10.3390/polym17050670.
[31] Fu, Y., Xu, Z., Zhang, X., Lu, Q., Sun, Z., & Wang, X. (2023). Synthesis and Performance Evaluation of Nano-Calcium Carbonate-Modified Geopolymers Incorporating Fly Ash and Manganese Slag: A Comprehensive Investigative Study. Processes, 11(12), 3418. doi:10.3390/pr11123418.
[32] Goodarzi, A. R., & Zandi, M. H. (2016). Assessing geo-mechanical and leaching behavior of cement–silica-fume-stabilized heavy metal-contaminated clayey soil. Environmental Earth Sciences, 75(10), 911. doi:10.1007/s12665-016-5730-2.
[33] Yan, F., Zhao, H., Liu, F., Wang, L., Huang, X., Zhao, X., ... & Ji, P. (2022). Remediation of cadmium and lead in contaminated soils by a newly modified fly ash material: The possibility and safety. Environmental Technology & Innovation, 28, 102894. doi:10.1016/j.eti.2022.102894.
[34] Fischer, E. R., Hansen, B. T., Nair, V., Hoyt, F. H., Schwartz, C. L., & Dorward, D. W. (2024). Scanning Electron Microscopy. Current Protocols, 4(5), 1034. doi:10.1002/cpz1.1034.
[35] Kato, T., Goto, K., Niwa, T., Shimizu, T., Fujii, A., Okumura, B., Oka, H., & Kadoura, H. (2025). A comprehensive and quantitative SEM–EDS analytical process applied to lithium-ion battery electrodes. Scientific Reports, 15(1), 5428. doi:10.1038/s41598-025-89362-w.
[36] Nalezinková, M., Loskot, J., & Myslivcová Fučíková, A. (2024). The use of scanning electron microscopy and fixation methods to evaluate the interaction of blood with the surfaces of medical devices. Scientific Reports, 14(1), 4622. doi:10.1038/s41598-024-55136-z.
[37] Calgaro, L., Contessi, S., Bonetto, A., Badetti, E., Ferrari, G., Artioli, G., & Marcomini, A. (2021). Calcium aluminate cement as an alternative to ordinary Portland cement for the remediation of heavy metals contaminated soil: mechanisms and performance. Journal of Soils and Sediments, 21(4), 1755–1768. doi:10.1007/s11368-020-02859-x.
[38] Shooshpasha, I., & Shirvani, R. A. (2015). Effect of cement stabilization on geotechnical properties of sandy soils. Geomechanics and Engineering, 8(1), 17–31. doi:10.12989/gae.2015.8.1.017.
[39] Xu, Z., Xie, X., He, M., Luo, Z., Wu, J., Bin, J., Yang, L., & Zhang, B. (2025). Research Review of Reaction Mechanism and Mechanical Properties of Chemically Solidified Silt. Buildings, 15(18), 3431. doi:10.3390/buildings15183431.
[40] Turan, C., Javadi, A. A., Vinai, R., & Russo, G. (2022). Effects of Fly Ash Inclusion and Alkali Activation on Physical, Mechanical, and Chemical Properties of Clay. Materials, 15(13), 4628. doi:10.3390/ma15134628.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















