Flood Simulation Utilizing HEC-HMS and HEC-RAS
Downloads
The substantial amount of rainfall leading to runoff in floodplain regions poses hazards to residents within these areas and surrounding zones; consequently, flood simulation is crucial for precise risk evaluation and the formulation of water utilization strategies. In this research, hydraulic and hydrological models, supported by Geographic Information Systems (GIS), were employed to simulate rainfall-runoff mechanisms in Wasit Governorate, central Iraq. A resolution of 30 m Digital Elevation Model (DEM) was supplied by the USGS, geospatially processed, and then imported into the Hydrologic Modeling System (HEC-HMS) at the Hydrologic Engineering Center. The runoff within the research area was estimated using the SCS-CN approach. In order to find the Curve Numbers (CN), a number of datasets were combined, including those pertaining to land use, land cover (LULC), and soil types. The HEC-HMS system was fed CN values obtained from GIS, which varied between 73.95 and 97.61. During the incident in November 2015, the Hydrologic Engineering Center's River Analysis System (HEC-RAS) was utilized to simulate floods using the runoff data resulting from HEC-HMS. Inundation maps were produced using RAS-Mapper within HEC-RAS, depicting flood depth and velocity through the study area. The flood model underwent calibration through comparison of the simulation results with satellite imagery for November 14, 2015. Using CSI, the hydrological factors Ia, Muskingum K, and X, and impervious % were adjusted using sensitivity analysis to achieve the greatest convergence between the model and satellite image. The result of CSI was 88.56%, (HR) was 96.31%, and (FAR) was 8.33%. The validation has been done for the calibrated parameters, and the results were compared with satellite imagery for April 3, 2019. The high level of concordance allowed for the final inundation map to be approved. The importance of measuring runoff for managing water resources effectively and reducing flood risks is highlighted by this study.
Downloads
[1] Salih, R. A. K., Al-Juhaishi, M. R., Ibrahim, A. K., & Jabr, S. A. A. R. (2025). Statistical Analysis of the Maximum Annual Rainfall Data at Al-Shuwaija Marshes in Wasit Governorate, Iraq. Tikrit Journal of Engineering Sciences, 32(2), 22. doi:10.25130/tjes.32.2.22.
[2] Admas, M., Asrade, T. M., & Cherie, W. D. (2025). Application of the HEC-RAS and HEC-HMS Models for Flood Risk Analysis in the Gumara River, Upper Blue Nile Basin, Ethiopia. Advances in Meteorology, 2025(1), 5092932. doi:10.1155/adme/5092932.
[3] ReliefWeb. (2020). Flood hotspots in Iraq (October 2018-March 2019) (October 2020). ReliefWeb, New York, United States. Available online: https://reliefweb.int/map/iraq/flood-hotspots-iraq-october-2018-march-2019-october-2020 (accessed on December 2025).
[4] Chow, V. T., Maidment, D. R. & Mays, L. W. (1988) Applied Hydrology. International Edition, McGraw-Hill Book Company, New York, United States.
[5] HEC-HMS (2026). HEC-HMS User's Manual, USACE Hydrologic Engineering Center, Davis, United States. Available online: https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/4.12 (accessed on December 2025).
[6] Marimin, N. A., Razi, M. A. M., Ahmad, M. A., Adnan, M. S., & Rahmat, S. N. (2018). HEC-RAS hydraulic model for floodplain area in Sembrong River. International Journal of Integrated Engineering, 10(2), 151–157. doi:10.30880/ijie.2018.10.02.029.
[7] Salman, Q. M. K., & Hamdan, A. N. A. (2023). Runoff Estimation for the Central Region of the Lesser Zab River Watershed Using the SCS-Curve Number Method and GIS. Journal of Ecological Engineering, 24(9), 232–245. doi:10.12911/22998993/167789.
[8] Olayinka, D. N., & Irivbogbe, H. E. (2017). Estimation of Hydrological Outputs using HEC-HMS and GIS. Nigerian Journal of Environmental Sciences and Technology, 1(2), 390–402. doi:10.36263/nijest.2017.02.0054.
[9] Sagathia, J., Kotecha, N., Patel, H., & Patel, A. (2020). Impact Assessment of Urban Flood in Surat City using HEC-HMS and GIS. Proceedings of the 4th International Conference: Innovative Advancement in Engineering & Technology (IAET) 2020, 1-9. doi:10.2139/ssrn.3558360.
[10] Hamdan, A. N. A., Almuktar, S., & Scholz, M. (2021). Rainfall-runoff modeling using the HEC-HMS model for the Al-Adhaim river catchment, northern Iraq. Hydrology, 8(2). doi:10.3390/hydrology8020058.
[11] Kazezyılmaz-Alhan, C. M., Yalçın, Javanshour, K., Aytekin, M., & Gülbaz, S. (2021). A hydrological model for Ayamama watershed in Istanbul, Turkey, using HEC-HMS. Water Practice and Technology, 16(1), 154–161. doi:10.2166/wpt.2020.108.
[12] Hamdan, A. N. A., Abbas, A. A., & Najm, A. T. (2019). Flood hazard analysis of proposed regulator on Shatt Al-Arab River. Hydrology, 6(3), 80. doi:10.3390/hydrology6030080.
[13] Afzal, M. A., Ali, S., Nazeer, A., Khan, M. I., Waqas, M. M., Aslam, R. A., Cheema, M. J. M., Nadeem, M., Saddique, N., Muzammil, M., & Shah, A. N. (2022). Flood Inundation Modeling by Integrating HEC–RAS and Satellite Imagery: A Case Study of the Indus River Basin. Water (Switzerland), 14(19), 2984. doi:10.3390/w14192984.
[14] Mohamed, M. J., Karim, I. R., Fattah, M. Y., & Al-Ansari, N. (2023). Modelling Flood Wave Propagation as a Result of Dam Piping Failure Using 2D-HEC-RAS. Civil Engineering Journal (Iran), 9(10), 2503–2515. doi:10.28991/CEJ-2023-09-10-010.
[15] Sabeti, R., Stamataki, I., & Kjeldsen, T. R. (2024). Reconstructing the 1968 River Chew flash flood: merging a HEC-RAS 2D hydraulic modelling approach with historical evidence. Geomatics, Natural Hazards and Risk, 15(1), 2377655. doi:10.1080/19475705.2024.2377655.
[16] Mihu-Pintilie, A., Urzică, A., Stoleriu, C. C., & Pricop, C. I. (2025). Integrating LiDAR-derived DEM, rainfall radar data, and SAR imagery for 2D HEC-RAS modelling to assess the severity of pluvial flash floods induced by Storm Boris in SE Romania. Geomatics, Natural Hazards and Risk, 16(1), 2488190. doi:10.1080/19475705.2025.2488190.
[17] Khudhur, I. D., & Hamdan, A. N. A. (2024). Dam break modeling and downstream flood inundation mapping on Darbandikhan Dam, Iraq. Edelweiss Applied Science and Technology, 8(6), 6383-6403. doi:10.55214/25768484.v8i6.3382.
[18] Alrammahi, F. S., & Hamdan, A. N. A. (2022). Simulation of Rainfall-Runoff in the Diyala River Basin in Iraq using Hydrological Model by HMS with remote sensing, Geo-HMS and ArcGIS. IOP Conference Series: Earth and Environmental Science, 1120(1), 012007. doi:10.1088/1755-1315/1120/1/012007.
[19] Youssef, A. M., Abu-Abdullah, M. M., Abu Alfadail, E., Skilodimou, H. D., & Bathrellos, G. D. (2021). The devastating flood in the arid region a consequence of rainfall and dam failure: Case study, Al-Lith flood on 23th November 2018, Kingdom of Saudi Arabia. Zeitschrift Fur Geomorphologie, 63(1), 115–136. doi:10.1127/zfg/2021/0672.
[20] Ata, F. M., Toriman, M. E., Desa, S. M., San, L. Y., & Kamarudin, M. K. A. (2023). Development of Hydrological Modelling Using HEC-HMS and Hec-Ras for Flood Hazard Mapping At Junjung River Catchment. Planning Malaysia, 21(6), 116–129. doi:10.21837/PM.V21I30.1390.
[21] Alsubeai, A., & Burckhard, S. R. (2021). Rainfall-Runoff Simulation and Modelling Using HEC-HMS and HEC-RAS Models: Case Study Tabuk, Saudi Arabia. Natural Resources, 12(10), 321–338. doi:10.4236/nr.2021.1210022.
[22] El-Bagoury, H., & Gad, A. (2024). Integrated Hydrological Modeling for Watershed Analysis, Flood Prediction, and Mitigation Using Meteorological and Morphometric Data, SCS-CN, HEC-HMS/RAS, and QGIS. Water, 16(2), 356. doi:10.3390/w16020356.
[23] Supratman, M., Kusuma, M. S. B., Cahyono, M., & Kuntoro, A. A. (2024). Flood Hazard Assessment Due to Changes in Land Use and Cover. Civil Engineering Journal (Iran), 10(12), 3874–3891. doi:10.28991/CEJ-2024-010-12-04.
[24] HEC-RAS. (2016). HEC-RAS River Analysis System: User Manual 1D and 2D Version 5.0. Man. CPD-68. US Army Corps of Engineers Hydrologic Engineering Center, Davis, United States.
[25] Alrammahi, F. S. (2024). Estimation of curve number for hydrological models in the Northern area of Iraq. AIP Conference Proceedings, 3249(1), 0236578. doi:10.1063/5.0236578.
[26] Jehanzaib, M., Ajmal, M., Achite, M., & Kim, T. W. (2022). Comprehensive Review: Advancements in Rainfall-Runoff Modelling for Flood Mitigation. Climate, 10(10). doi:10.3390/cli10100147.
[27] U.S. Army Corps of Engineers, Hydrologic Engineering Center. (2024). HEC-HMS Hydrologic Modeling System: User’s Manual (Version 4.13). US Army Corps of Engineers Hydrologic Engineering Center, Davis, United States. Available online: https://www.hec.usace.army.mil/software/hec-hms/ (accessed on December 2025).
[28] Goodarzi, M. R., Poorattar, M. J., Vazirian, M., & Talebi, A. (2024). Evaluation of a weather forecasting model and HEC-HMS for flood forecasting: case study of Talesh catchment. Applied Water Science, 14(2), 34. doi:10.1007/s13201-023-02079-x.
[29] HEC:USACE (2026). Curve Number, HEC-RAS Hydraulic Reference Manual. US Army Corps of Engineers Hydrologic Engineering Center, Davis, United States.
[30] Soulis, K. X. (2021). Soil conservation service curve number (SCS-CN) method: Current applications, remaining challenges, and future perspectives. In Water (Switzerland) (Vol. 13, Issue 2). doi:10.3390/w13020192.
[31] Williams, J. R., Kannan, N., Wang, X., Santhi, C., & Arnold, J. G. (2012). Evolution of the SCS Runoff Curve Number Method and Its Application to Continuous Runoff Simulation. Journal of Hydrologic Engineering, 17(11), 1221–1229. doi:10.1061/(asce)he.1943-5584.0000529.
[32] Souley Tangam, I., Yonaba, R., Niang, D., Adamou, M. M., Keïta, A., & Karambiri, H. (2024). Daily Simulation of the Rainfall–Runoff Relationship in the Sirba River Basin in West Africa: Insights from the HEC-HMS Model. Hydrology, 11(3), 34. doi:10.3390/hydrology11030034.
[33] Martin, O., Rugumayo, A., & Ovcharovichova, J. (2012). Application of HEC-HMS / RAS and GIS Tools in Flood Modeling : A Case Study for River Sironko – Uganda. Global Journal of Engineering, Design & Technology, 1(2), 19–31.
[34] Alhumoud, J. (2022). Analysis and Evaluation of Flood Routing using Muskingum Method. Journal of Applied Engineering Science, 20(4), 1366–1377. doi:10.5937/jaes0-37455.
[35] Alhumoud, J., & Almashan, N. (2019). Muskingum Method with Variable Parameter Estimation. Mathematical Modelling of Engineering Problems, 6(3), 355–362. doi:10.18280/mmep.060306.
[36] Natakusumah, D. K., Hatmoko, W., Harlan, D., Nugroho, E. O., Kuntoro, A. A., Farid, M., … Javas, J. (2025). The ITB Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development (Part II). Civil Engineering Journal, 11(5), 1980–2007. doi:10.28991/CEJ-2025-011-05-015.
[37] Phyo, A. P., Yabar, H., & Richards, D. (2023). Managing dam breach and flood inundation by HEC-RAS modeling and GIS mapping for disaster risk management. Case Studies in Chemical and Environmental Engineering, 8. doi:10.1016/j.cscee.2023.100487.
[38] HEC:USACE (2026). HEC-RAS River Analysis System: User Manual 1D and 2D Version 5.0, US Army Corps of Engineers Hydrologic Engineering Center, Davis, United States. Available online: www.hec.usace.army.mil (accessed on January 2026).
[39] Palaić, D., Štajduhar, I., Ljubic, S., & Wolf, I. (2023). Development, Calibration, and Validation of a Simulation Model for Indoor Temperature Prediction and HVAC System Fault Detection. Buildings, 13(6). doi:10.3390/buildings13061388.
[40] Pertiwi, A. P., Roth, A., Schaffhauser, T., Bhola, P. K., Reuß, F., Stettner, S., Kuenzer, C., & Disse, M. (2021). Monitoring the spring flood in Lena delta with hydrodynamic modeling based on SAR satellite products. Remote Sensing, 13(22), 4695. doi:10.3390/rs13224695.
[41] Zotou, I., Karamvasis, K., Karathanassi, V., & Tsihrintzis, V. A. (2022). Potential of Two SAR-Based Flood Mapping Approaches in Supporting an Integrated 1D/2D HEC-RAS Model. Water, 14(24), 4020. doi:10.3390/w14244020.
[42] Gilbert, G. K. (1884). Finley's tornado predictions. American Meteorological Journal, 1, 166–172.
[43] Palmer, W. C., & Allen, R. A. (1949). Note on the accuracy of forecasts concerning the rain problem. United States Weather Bureau, Maryland, United States.
[44] Donaldson, R. J., Dyer, R. M., & Kraus, M. J. (1975). An objective evaluator of techniques for predicting severe weather events. Preprints, Ninth Conference on Severe Local Storms, 321326.
[45] Schaefer, J. T. (1990). The critical success index as an indicator of warning skill. Weather and Forecasting, 5(4), 570-575.
[46] Elkhrachy, I., Pham, Q. B., Costache, R., Mohajane, M., Rahman, K. U., Shahabi, H., Linh, N. T. T., & Anh, D. T. (2021). Sentinel-1 remote sensing data and Hydrologic Engineering Centres River Analysis System two-dimensional integration for flash flood detection and modelling in New Cairo City, Egypt. Journal of Flood Risk Management, 14(2), 12692. doi:10.1111/jfr3.12692.
[47] Wing, O. E. J., Bates, P. D., Sampson, C. C., Smith, A. M., Johnson, K. A., & Erickson, T. A. (2017). Validation of a 30 m resolution flood hazard model of the conterminous United States. Water Resources Research, 53(9), 7968–7986. doi:10.1002/2017WR020917.
[48] Tassew, B. G., Belete, M. A., & Miegel, K. (2019). Application of HEC-HMS Model for Flow Simulation in the Lake Tana Basin: The Case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia. Hydrology, 6(1), 21. doi:10.3390/hydrology6010021.
[49] Belay, Y. Y., Gouday, Y. A., & Alemnew, H. N. (2022). Comparison of HEC-HMS hydrologic model for estimation of runoff computation techniques as a design input: case of Middle Awash multi-purpose dam, Ethiopia. Applied Water Science, 12(10), 237. doi:10.1007/s13201-022-01764-7.
[50] Avand, M., Kuriqi, A., Khazaei, M., & Ghorbanzadeh, O. (2022). DEM resolution effects on machine learning performance for flood probability mapping. Journal of Hydro-Environment Research, 40, 1–16. doi:10.1016/j.jher.2021.10.002.
[51] Zhu, H., & Chen, Y. (2024). A Study of the Effect of DEM Spatial Resolution on Flood Simulation in Distributed Hydrological Modeling. Remote Sensing, 16(16), 3105. doi:10.3390/rs16163105.
[52] Al-zubaidi, S. A., & Abed, B. S. (2024). Studying and Assessing Surface Water Use of Shuwaija Marsh within Wasit Governorate-Iraq. Journal of Engineering, 30(03), 159–176. doi:10.31026/j.eng.2024.03.11.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















