Reliability Design of a New Masonry Bridge: An Approach Based on RBDO and Rigid Block Analysis
Downloads
The objective of this study is to establish a reliability-based design framework for new masonry arch bridges, providing a rational alternative to the empirical rules that traditionally governed their construction. The proposed methodology integrates Reliability-Based Design Optimization (RBDO) with the rigid block limit analysis method to optimize key geometric parameters under uncertain loading conditions. The probabilistic formulation incorporates the variability of geometric and load parameters, which are identified as the dominant sources of uncertainty during the design phase of new masonry bridges. Two RBDO strategies are employed: the Performance Measure Approach (PMA) and Sequential Optimization with Reliability Assessment (SORA), both coupled with a linear programming formulation of equilibrium and yield constraints. The approach is applied to the reconstruction of the historical Dar El Makina bridge in Fes, Morocco, to determine the optimal geometric configuration that satisfies target reliability requirements. The results indicate that the optimized design achieves a 27% reduction in arch thickness and a 13% increase in rise compared to the existing structure, leading to a safer and more material-efficient configuration. Compared with classical empirical formulas, the proposed approach provides a rational and quantitative basis for the design of masonry bridges, combining structural safety, material efficiency, and heritage preservation.
Downloads
[1] Ma, Y. Z., Jin, X. X., Wu, X. L., Xu, C., Li, H. S., & Zhao, Z. Z. (2023). Reliability-based design optimization using adaptive Kriging-A single-loop strategy and a double-loop one. Reliability Engineering and System Safety, 237, 109386. doi:10.1016/j.ress.2023.109386.
[2] Jiang, Y., Zhang, X., Beer, M., Zhou, H., & Leng, Y. (2024). An efficient method for reliability-based design optimization of structures under random excitation by mapping between reliability and operator norm. Reliability Engineering & System Safety, 245, 109972. doi:10.1016/j.ress.2024.109972.
[3] Hu, W., Cheng, S., Yan, J., Cheng, J., Peng, X., Cho, H., & Lee, I. (2024). Reliability-based design optimization: a state-of-the-art review of its methodologies, applications, and challenges. Structural and Multidisciplinary Optimization, 67(9), 168. doi:10.1007/s00158-024-03884-x.
[4] Kusano, I., Cid Montoya, M., Baldomir, A., Nieto, F., Jurado, J. Á., & Hernández, S. (2020). Reliability based design optimization for bridge girder shape and plate thicknesses of long-span suspension bridges considering aeroelastic constraint. Journal of Wind Engineering and Industrial Aerodynamics, 202, 104176. doi:10.1016/j.jweia.2020.104176.
[5] Wu, X., Yuan, W., & Guo, A. (2024). Reliability-based life-cycle cost seismic design optimization of coastal bridge piers with nonuniform corrosion using different materials. Earthquake Engineering and Engineering Vibration, 23(1), 209–225. doi:10.1007/s11803-024-2234-z.
[6] Livesley, R. K. (1978). Limit analysis of structures formed from rigid blocks. International Journal for Numerical Methods in Engineering, 12(12), 1853–1871. doi:10.1002/nme.1620121207.
[7] Gilbert, M. (2007). Limit analysis applied to masonry arch bridges: state-of-the-art and recent developments. 5th International arch bridges conference, 12-14 September, 2007, Guimaraes, Portugal.
[8] Nodargi, N. A., & Bisegna, P. (2020). Thrust line analysis revisited and applied to optimization of masonry arches. International Journal of Mechanical Sciences, 179, 105690. doi:10.1016/j.ijmecsci.2020.105690.
[9] Todisco, L., Stocks, E., & León, J. (2025). Design, construction and testing of post-tensioned stone arch footbridges. Structures, 76, 109055. doi:10.1016/j.istruc.2025.109055.
[10] Adiels, E., Ander, M., Boman, F., Forsberg, J., Godio, M., Svedjer, E., ... & Williams, C. J. (2024). The structural behaviour of masonry bridges designed as hydrostatic shells. Proceedings of IASS Annual Symposia, 26-30 August, 2024, Zurich Switzerland.
[11] Orfeo, B. (2023). On the design and construction of stone masonry bridges: comprehensive review of traditional literature-based techniques and practical applications to current professional projects. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain. doi:10.20868/upm.thesis.76767.
[12] Fadel, M. T., Rguig, M., El Aroussi, M., & Saadane, R. (2023). Reliability-Based Assessment of a Masonry Arch Bridge Considering Random Stereotomy. Practice Periodical on Structural Design and Construction, 28(4), 4023046. doi:10.1061/ppscfx.sceng-1310.
[13] Lemaire, M., Chateauneuf, A., & Mitteau, J. (2009). Structural Reliability. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470611708.
[14] Ditlevsen, O., & Madsen, H. O. (1996). Structural reliability methods. Wiley, Hoboken, United States.
[15] Melchers, R. E., & Beck, A. T. (2017). Structural Reliability Analysis and Prediction. Wiley, Hoboken, United States. doi:10.1002/9781119266105.
[16] Moustapha, M., & Sudret, B. (2019). Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework. Structural and Multidisciplinary Optimization, 60(5), 2157–2176. doi:10.1007/s00158-019-02290-y.
[17] Aoues, Y., & Chateauneuf, A. (2008). Reliability-based optimization of structural systems by adaptive target safety - Application to RC frames. Structural Safety, 30(2), 144–161. doi:10.1016/j.strusafe.2006.10.002.
[18] Gholizadeh, S., & Mohammadi, M. (2017). Reliability-Based Seismic Optimization of Steel Frames by Metaheuristics and Neural Networks. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(1), 4016013. doi:10.1061/ajrua6.0000892.
[19] Siacara, A. T., Pellizzer, G. P., Beck, A. T., & Futai, M. M. (2022). Reliability-based design optimization of a concrete dam. Revista IBRACON de Estruturas e Materiais, 15(5), 15501. doi:10.1590/S1983-41952022000500001.
[20] Yu, Y., Wei, M., Yu, J., Cui, Y., Gao, R., Dong, Z., & Wang, X. (2023). Reliability-based design method for marine structures combining topology, shape, and size optimization. Ocean Engineering, 286, 115490. doi:10.1016/j.oceaneng.2023.115490.
[21] Chateauneuf, A. (2008). Principles of reliability-based design optimization. Structural design optimization considering uncertainties, 3-31, CRC Press, Boca Raton, United States.
[22] Marelli, S., & Sudret, B. (2014). UQLab: A framework for uncertainty quantification in Matlab. Vulnerability, uncertainty, and risk: quantification, mitigation, and management, American Society of Civil Engineers, Reston, United States. doi:10.1061/9780784413609.25.
[23] Choi, K. K., & Youn, B. D. (2002). On probabilistic approaches for reliability-based design optimization (RBDO). 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. doi:10.2514/6.2002-5472.
[24] Chateauneuf, A., & Aoues, Y. (2008). Advances in solution methods for reliability-based design optimization. Structural Design Optimization Considering Uncertainties, 251-280, CRC Press, Boca Raton, United States.
[25] Gilbert, M., Pritchard, T. J., & Smith, C. C. (2023). LimitState: RING Manual, Version 4.0., Sheffield, United Kingdom.
[26] Heyman, J. (1966). The stone skeleton. International Journal of Solids and Structures, 2(2), 249. doi:10.1016/0020-7683(66)90018-7.
[27] Patel, N. M., Renaud, J. E., Tillotson, D., Agarwal, H., & Tovar, A. (2008). A decoupled approach to reliability based topology optimization for structural synthesis. Structural Design Optimization Considering Uncertainties, 281–305, CRC Press, Boca Raton, United States.
[28] Proske, D., & Gelder, P. (2009). Safety of historical stone arch bridges. Springer, Berlin, Germany. doi:10.1007/978-3-540-77618-5.
[29] Vrouwenvelder, T. (1997). The JCSS probabilistic model code. Structural Safety, 19(3), 245–251. doi:10.1016/S0167-4730(97)00008-8.
[30] EN 1990. (2002). Eurocode 0, Basis of Structural Design. European Committee for Standardization (CEN), Brussels, Belgium.
[31] Moreira, V. N., Fernandes, J., Matos, J. C., & Oliveira, D. V. (2016). Reliability-based assessment of existing masonry arch railway bridges. Construction and Building Materials, 115, 544–554. doi:10.1016/j.conbuildmat.2016.04.030.
[32] Moreira, V. N., Matos, J. C., & Oliveira, D. V. (2017). Probabilistic-based assessment of a masonry arch bridge considering inferential procedures. Engineering Structures, 134, 61–73. doi:10.1016/j.engstruct.2016.11.067.
[33] De Santis, S., & De Felice, G. (2014). Overview of railway masonry bridges with a safety factor estimate. International Journal of Architectural Heritage, 8(3), 452–474. doi:10.1080/15583058.2013.826298.
[34] Matos, J. C., Moreira, V. N., Valente, I. B., Cruz, P. J. S., Neves, L. C., & Galvão, N. (2019). Probabilistic-based assessment of existing steel-concrete composite bridges – Application to Sousa River Bridge. Engineering Structures, 181, 95–110. doi:10.1016/j.engstruct.2018.12.006.
[35] Lee, J. O., Yang, Y. S., & Ruy, W. S. (2002). A comparative study on reliability-index and target-performance-based probabilistic structural design optimization. Computers and Structures, 80(3–4), 257–269. doi:10.1016/S0045-7949(02)00006-8.
[36] Du, X., & Chen, W. (2004). Sequential optimization and reliability assessment method for efficient probabilistic design. Journal of Mechanical Design, 126(2), 225–233. doi:10.1115/1.1649968.
[37] Lopez, R. H., & Beck, A. T. (2012). Reliability-based design optimization strategies based on form: A review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34(4), 506–514. doi:10.1590/S1678-58782012000400012.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















