Numerical Investigation of Oil Shale in Asphalt for Road Surfacing Using COMSOL Multiphysics
Downloads
This study introduces a sustainable, performance-driven approach to asphalt pavement design by incorporating oil shale-modified bitumen into hot-mix asphalt (HMA) and evaluating four performance grade (PG) binders. The research provides a comprehensive evaluation of mechanical and rheological behaviors across varying thermal and loading conditions. A key innovation lies in the integration of oil shale, which significantly reduces voids in mineral aggregates (VMA), leading to improved aggregate contact and material densification. This microstructural enhancement directly translates into increased dynamic modulus (E*) and shear modulus (G*), reinforcing the mixture’s stiffness and deformation resistance without the need for costly chemical additives. The results demonstrate that oil shale improves the load-bearing capacity of asphalt mixtures, particularly under high-frequency loading where elastic responses are favored. Moreover, the optimized mixtures maintain a favorable balance between rigidity and flexibility, typically prone to compressive deformation, and benefit from oil shale integration through enhanced stress dissipation characteristics. The study offers a novel pathway for valorizing oil shale, a locally abundant, underutilized material, as a functional asphalt modifier. The findings validate its potential to extend pavement service life, optimize stiffness–temperature profiles, and reduce dependency on virgin bitumen. These results position oil shale as a viable, cost-effective, and environmentally advantageous additive for future-proof pavement engineering.
Downloads
[1] Wang, W., Cheng, Y., Tan, G., Liu, Z., & Shi, C. (2018). Laboratory investigation on high- and low-temperature performances of asphalt mastics modified by waste oil shale ash. Journal of Material Cycles and Waste Management, 20(3), 1710–1723. doi:10.1007/s10163-018-0737-2.
[2] Choudhary, J., Kumar, B., & Gupta, A. (2020). Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Construction and Building Materials, 234, 117271. doi:10.1016/j.conbuildmat.2019.117271.
[3] Wong, T. L. X., Mohd Hasan, M. R., & Peng, L. C. (2022). Recent development, utilization, treatment and performance of solid wastes additives in asphaltic concrete worldwide: A review. Journal of Traffic and Transportation Engineering (English Edition), 9(5), 693–724. doi:10.1016/j.jtte.2022.06.003.
[4] Akinleye, M., Al Kaaf, K., Oyebisi, S., Tijani, M., Salami, M., & Adeleke, J. (2025). Valorizing waste materials as biomass fillers in the production of asphalt mixtures. World Journal of Engineering, 1-12. doi:10.1108/WJE-12-2024-0672.
[5] Jweihan, Y. S. (2024). Implementation of ceramic waste as fine aggregate in rigid pavement: performance enhancement through silane coupling agent. Arabian Journal for Science and Engineering, 49(4), 4557-4565. doi:10.1007/s13369-023-08165-1.
[6] Alouani, M. A., Saifaoui, D., Alouani, A., & Alouani, Y. (2023). The use of Oil Shale for Road Coating. Global Journal of Researches in Engineering, 43, 43–46. doi:10.34257/gjreevol23is2pg43.
[7] Bolden, J., Abu-Lebdeh, T., & Fini, E. (2013). Utilization of recycled and waste materials in various construction applications. American Journal of Environmental Sciences, 9(1), 14–24. doi:10.3844/ajessp.2013.14.24.
[8] Amayreh, L., Mohamed, M., Abdelhadi, M., & Sheehan, T. (2023). Engineering properties and mechanical behaviour of problematic soil stabilized by bituminous oil shale ash. Applications in Engineering Science, 16, 100156. doi:10.1016/j.apples.2023.100156.
[9] Salah Alaloul, W., Al Salaheen, M., Malkawi, A. B., Alzubi, K., Al-Sabaeei, A. M., & Ali Musarat, M. (2021). Utilizing of oil shale ash as a construction material: A systematic review. Construction and Building Materials, 299, 123844. doi:10.1016/j.conbuildmat.2021.123844.
[10] Dong, P., Yuan, Y., & Cao, X. (2024). Numerical investigation of dynamic stresses in asphalt pavement under the combined action of temperature, moisture and traffic loading. Construction and Building Materials, 417, 135131. doi:10.1016/j.conbuildmat.2024.135131.
[11] Jwaida, Z., Al Quraishy, Q. A., Almuhanna, R. R. A., Dulaimi, A., Bernardo, L. F. A., & Andrade, J. M. de A. (2024). The Use of Waste Fillers in Asphalt Mixtures: A Comprehensive Review. CivilEng, 5(4), 801–826. doi:10.3390/civileng5040042.
[12] Zhang, H., Airey, G., & Zhang, Y. (2024). Temporal Homogenization Modeling of Viscoelastic Asphalt Concretes and Pavement Structures under Large Numbers of Load Cycles. Journal of Engineering Mechanics, 150(11), 4024082. doi:10.1061/jenmdt.emeng-7697.
[13] Liu, Y. (2025). Virtual Modelling Aided Phase Field Method of Fracture and Fatigue Analysis. Ph.D. Thesis, UNSW Sydney, Kensington, Australia. doi:10.26190/UNSWORKS/31690.
[14] Shah, I., Khan, A., Ali, M., Shahab, S., Aziz, S., Noon, M. A. A., & Tipu, J. A. K. (2023). Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life. Materials, 16(13), 4804. doi:10.3390/ma16134804.
[15] Guo, X., Chen, X., Li, Y., Li, Z., & Guo, W. (2019). Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture. Sustainability, 11(18), 4857. doi:10.3390/su11184857.
[16] Ghuzlan, K., Al-Khateeb, G., & Damrah, A. A. (2013). Using oil shale ash waste as a modifier for asphalt binders. Journal of Material Cycles and Waste Management, 15(4), 522–529. doi:10.1007/s10163-013-0135-8.
[17] Pei, K., Yu, J., Hu, N., Yang, B., Deng, Y., & Zhang, Y. (2025). Linking fatigue resistance of RAP-blended asphalt mixture and its fine aggregate matrix using viscoelastic continuum damage models. Construction and Building Materials, 502, 144460. doi:10.1016/j.conbuildmat.2025.144460.
[18] Wang, W., Cheng, Y., Tan, G., & Shi, C. (2020). Pavement performance evaluation of asphalt mixtures containing oil shale waste. Road Materials and Pavement Design, 21(1), 179–200. doi:10.1080/14680629.2018.1483260.
[19] Asi, I., & Assa’ad, A. (2005). Effect of Jordanian Oil Shale Fly Ash on Asphalt Mixes. Journal of Materials in Civil Engineering, 17(5), 553–559. doi:10.1061/(asce)0899-1561(2005)17:5(553).
[20] Al-Qadi, Q. N., Al-Qadi, A. N., & Khedaywi, T. S. (2014). Effect of oil shale ash on static creep performance of asphalt paving mixtures. Jordan Journal of Earth and Environmental Sciences, 6(2), 67-75.
[21] Mymrin, V. A., & Ponte, H. A. (2005). Oil-shale fly ash utilization as independent binder of natural clayey soils for road and airfield base construction. Particulate Science and Technology, 23(1), 99–107. doi:10.1080/02726350590902505.
[22] Jweihan, Y. S. (2024). Performance of Aged Asphalt Mixes Containing Waste Oil Shale Filler. International Journal of Pavement Research and Technology, 17(6), 1435–1449. doi:10.1007/s42947-023-00311-0.
[23] Azzam, M. O. J., Al-Ghazawi, Z., & Al-Otoom, A. (2016). Incorporation of Jordanian oil shale in hot mix asphalt. Journal of Cleaner Production, 112, 2259–2277. doi:10.1016/j.jclepro.2015.10.128.
[24] Reinik, J., Irha, N., Koroljova, A., & Meriste, T. (2018). Use of oil shale ash in road construction: results of follow-up environmental monitoring. Environmental Monitoring and Assessment, 190(2), 59. doi:10.1007/s10661-017-6421-5.
[25] Chen, W., Li, Y., Chen, S., & Zheng, C. (2020). Properties and economics evaluation of utilization of oil shale waste as an alternative environmentally-friendly building materials in pavement engineering. Construction and Building Materials, 259, 119698. doi:10.1016/j.conbuildmat.2020.119698.
[26] Hafeez, I., Kamal, M. A., & Mahir, M. (2012). Characterization of hot mix asphalt using the dynamic modulus and wheel tracking testing. Proceedings of Pakistan Academy of Sciences, 49(2), 71-77.
[27] Malekzehtab, H., & Nikraz, H. (2017). Evaluation of the Hirsch model for dynamic modulus estimation of asphalt mixtures. Proceedings of International Structural Engineering and Construction, 4(1). doi:10.14455/ISEC.res.2017.92.
[28] Sobolev, K., Flores Vivian, I., Saha, R., Wasiuddin, N. M., & Saltibus, N. E. (2014). The effect of fly ash on the rheological properties of bituminous materials. Fuel, 116, 471–477. doi:10.1016/j.fuel.2013.07.123.
[29] Liu, Y., Xiong, Y., Li, Y., & Peng, P. (2018). Effect of thermal maturation on chemical structure and nanomechanical properties of solid bitumen. Marine and Petroleum Geology, 92, 780–793. doi:10.1016/j.marpetgeo.2017.12.008.
[30] Blanks, R. F. (1950). Fly ash as a pozzolan. Materiales de Construcción, 015, 42–43. doi:10.3989/mc.1950.i015.3124.
[31] Chabot, A., Chupin, O., Deloffre, L., & Duhamel, D. (2010). ViscoRoute 2.0 A: Tool for the Simulation of Moving Load Effects on Asphalt Pavement. Road Materials and Pavement Design, 11(2), 227–250. doi:10.1080/14680629.2010.9690274.
[32] Shenoy, A. (2004). High temperature performance grading of asphalts through a specification criterion that could capture field performance. Journal of Transportation Engineering, 130(1), 132–137. doi:10.1061/(ASCE)0733-947X(2004)130:1(132).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















