Spatial Prediction of Soil Index Properties Using GIS and Empirical Bayesian Kriging
Downloads
The purpose of this study is to assess the possible use of Empirical Bayesian Kriging (EBK) combined with Geographic Information Systems (GIS) to map and analyze geotechnical index properties in Thi Qar Province in southern Iraq. The aim of this objective is to describe the spatial variability of soil limits of the consistency and define areas with expansive soils, which may influence infrastructure development. Data on 550 boreholes and 862 observations per soil property, including Liquid Limit (LL), Plastic Limit (PL), and Plasticity Index (PI), were analyzed. To test the predictive accuracy of the EBK model and thus assure its statistical validation, RMSE, MSD, RMSSD, and correlation coefficients were used to test the model. The findings show that the LL was between 32% and 69%, the PL between 9% and 36%, and the PI between 1% and 39%, with most of the soils being CL and CH, which signifies moderate-high plasticity. The results indicate that there are good spatial patterns, and plasticity is more dense in the north and central areas. The originality of this work is the use of EBK to create detailed digital soil maps of a semi-arid area, where the available geotechnical data is sparse, which is used to form a dependable base to support engineering design, land-use planning, and regional geotechnical modelling.
Downloads
[1] Razmyar, A., & Eslami, A. (2017). Geotechnical Characterization of Soils in the Eastern and Western Areas of Tehran. Engineering, Technology & Applied Science Research, 7(4), 1802–1810. doi:10.48084/etasr.1200.
[2] Karakan, E. (2022). Comparative Analysis of Atterberg Limits, Liquidity Index, Flow Index and Undrained Shear Strength Behavior in Binary Clay Mixtures. Applied Sciences (Switzerland), 12(17), 8616. doi:10.3390/app12178616.
[3] Du, J. (2023). Swelling Mechanism and Swelling Behaviour of Expansive Clay and Clay Minerals. Ph.D. Thesis, RMIT University, Melbourne, Australia.
[4] Bahl, A., Bisht, D., Mohan, C., Kothapally, T., & Reddy, G. V. (2025). Role of Clay Minerals in Geotechnical Engineering: A State-of-the-Art Review with Geotechnical Data Analysis. AIP Conference Proceedings, 3157(1), 0263675. doi:10.1063/5.0263675.
[5] Pedarla, A., Chittoori, S., & Puppala, A. (2011). Influence of mineralogy and plasticity index on the stabilization effectiveness of expansive clays. Transportation Research Record, 2212, 91–99. doi:10.3141/2212-10.
[6] Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223–237. doi:10.1016/0013-7952(96)00028-2.
[7] Almuaythir, S., Zaini, M. S. I., & Lodhi, R. H. (2025). Predicting soil compaction parameters in expansive soils using advanced machine learning models: a comparative study. Scientific Reports, 15(1), 24018. doi:10.1038/s41598-025-09279-2.
[8] Arshid, M. U., & Kamal, M. A. (2020). Regional Geotechnical Mapping Employing Kriging on Electronic Geodatabase. Applied Sciences, 10(21), 7625. doi:10.3390/app10217625.
[9] Cheriet, F., Zerguine, A., & Cheriet, A. R. (2023). Development of a Geotechnical Database using the Geographic Information System Approach: The Case of Djelfa, Algeria. Engineering, Technology and Applied Science Research, 13(2), 10239–10242. doi:10.48084/etasr.5678.
[10] Gribov, A., & Krivoruchko, K. (2020). Empirical Bayesian kriging implementation and usage. Science of the Total Environment, 722. doi:10.1016/j.scitotenv.2020.137290.
[11] De Caires, S. A., Martin, C. S., Atwell, M. A., Kaya, F., Wuddivira, G. A., & Wuddivira, M. N. (2025). Advancing soil mapping and management using geostatistics and integrated machine learning and remote sensing techniques: a synoptic review. Discover Soil, 2(1), 53. doi:10.1007/s44378-025-00082-z.
[12] Al-Mamoori, S. K., Jasem Al-Maliki, L. A., Al-Sulttani, A. H., El-Tawil, K., Hussain, H. M., & Al-Ansari, N. (2020). Horizontal and Vertical Geotechnical Variations of Soils According to USCS Classification for the City of An-Najaf, Iraq Using GIS. Geotechnical and Geological Engineering, 38(2), 1919–1938. doi:10.1007/s10706-019-01139-x.
[13] Jalhoum, M. E. M., Abdellatif, M. A., Mohamed, E. S., Kucher, D. E., & Shokr, M. (2024). Multivariate analysis and GIS approaches for modeling and mapping soil quality and land suitability in arid zones. Heliyon, 10(5), e27577. doi:10.1016/j.heliyon.2024.e27577.
[14] Ijaz, N., Ijaz, Z., Zhou, N., Ur Rehman, Z., Abbas Jaffar, S. T., Ijaz, H., & Ijaz, A. (2025). Geotechnical Data-Driven Mapping for Resilient Infrastructure: An Augmented Spatial Interpolation Framework. Buildings, 15(17), 3211. doi:10.3390/buildings15173211.
[15] Utepov, Y., Aldungarova, A., Mukhamejanova, A., Awwad, T., Karaulov, S., & Makasheva, I. (2025). Voxel Interpolation of Geotechnical Properties and Soil Classification Based on Empirical Bayesian Kriging and Best-Fit Convergence Function. Buildings, 15(14), 2452. doi:10.3390/buildings15142452.
[16] Viegas, J., Gallardo, A., Costa, A. C., & Marinaro, R. (2024). Uncovering soft soils with 3D Empirical Bayesian Kriging A case study on cone penetration test data. Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society, 917–922, CRC Press, Boca Raton, United States. doi:10.1201/9781003431749-157.
[17] Miao, C., & Wang, Y. (2024). Interpolation of non-stationary geo-data using Kriging with sparse representation of covariance function. Computers and Geotechnics, 169. doi:10.1016/j.compgeo.2024.106183.
[18] Tzampoglou, P., Loukidis, D., Tsangaratos, P., Anastasiades, A., & Karalis, K. (2025). Correlation Between Geotechnical Indexes and Landslide Occurrence in Southwestern Cyprus Using GIS and Machine Learning. Geotechnical and Geological Engineering, 43(1), 43. doi:10.1007/s10706-024-03031-9.
[19] Yıldız, Ö. (2024). Integrated GIS-Based Mapping and ANFIS Modelling for Seismic and Geotechnical Characterization of Soil Properties. KSCE Journal of Civil Engineering, 28(9), 3708–3721. doi:10.1007/s12205-024-2262-2.
[20] Zaresefat, M., Derakhshani, R., & Griffioen, J. (2024). Empirical Bayesian Kriging, a Robust Method for Spatial Data Interpolation of a Large Groundwater Quality Dataset from the Western Netherlands. Water (Switzerland), 16(18), 2581. doi:10.3390/w16182581.
[21] Al-Mamoori, S. K., Al-Maliki, L. A., Al-Sulttani, A. H., El-Tawil, K., & Al-Ansari, N. (2021). Statistical analysis of the best GIS interpolation method for bearing capacity estimation in An-Najaf City, Iraq. Environmental Earth Sciences, 80(20), 683. doi:10.1007/s12665-021-09971-2.
[22] Al-Maliki, L. A. J., Al-Mamoori, S. K., El-Tawel, K., Hussain, H. M., Al-Ansari, N., & Jawad Al Ali, M. (2018). Bearing Capacity Map for An-Najaf and Kufa Cities Using GIS. Engineering, 10(05), 262–269. doi:10.4236/eng.2018.105018.
[23] ASTM D4318-05. (2010). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-05.
[24] Qusai, A. H., Szendefy, J., & Vásárhelyi, B. (2025). Effect of Changing Sand Content on Liquid Limit and Plasticity Index of Clay. Geotechnics, 5(1), 4. doi:10.3390/geotechnics5010004.
[25] Snethen, D. R. (1979). Technical guidelines for expansive soils in highway subgrades. Final Report, No. FHWA-RD-79-51, Engineering Research and Development Bureau, Washington, United States.
[26] Asuri, S., & Keshavamurthy, P. (2016). Expansive Soil Characterisation: an Appraisal. INAE Letters, 1(1), 29–33. doi:10.1007/s41403-016-0001-9.
[27] Casagrande, A. (1948). Classification and Identification of Soils. Transactions of the American Society of Civil Engineers, 113(1), 901–930. doi:10.1061/taceat.0006109.
[28] Chen, F. H. (2012). Foundations on expansive soils. Elsevier, Amsterdam, Netherlands.
[29] Holtz, W. G., & Gibbs, H. J. (1956). Engineering Properties of Expansive Clays. Transactions of the American Society of Civil Engineers, 121(1), 641–663. doi:10.1061/taceat.0007325.
[30] Samsonova, V. P., Blagoveshchenskii, Y. N., & Meshalkina, Y. L. (2017). Use of empirical Bayesian kriging for revealing heterogeneities in the distribution of organic carbon on agricultural lands. Eurasian Soil Science, 50(3), 305–311. doi:10.1134/S1064229317030103.
[31] Davila Saavedra, L., & Deutsch, C. V. (2025). Automatic variogram calculation and modeling. Computers and Geosciences, 195, 105774. doi:10.1016/j.cageo.2024.105774.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















