High-Resolution Silt Distribution Mapping Using Ordinary Kriging From Borehole Data in a Geohazard-Prone Area
Downloads
Kundasang, Sabah, is one of the most geohazard-prone highland regions in Malaysia. Slope failures are frequently triggered by heavy rain. Silt-rich zones present a particular stability problem, since silt has low cohesion and drains faster than clay, which means that slopes can undergo rapid saturation and lose shear strength during sustained and intense rainfall. Previous research works in Kundasang have focused on landslide susceptibility through rainfall thresholds and GIS terrain analysis. However, depth-specific, high-resolution silt distribution maps have not yet been produced. This study addresses the research gap using geostatistical modeling of geotechnical data from boreholes to map silt distribution patterns. Soil samples from 70 boreholes were analyzed by classifying soil types down to 10 m depth in 2.5 m segments. Using Ordinary Kriging in ArcGIS 10.3, the best-fit semivariogram model for each depth was selected based on the lowest Root Mean Square Error values (ranging from 5.33 to 11.92). The findings reveal that high-silt zones (areas with over 30% silt content) cover around 40% of the study area and cluster mainly in western and northern Kundasang, particularly in the upper 7.5 m of soil. These correspond to areas previously documented as highly susceptible to rainfall-induced slope failures. The depth-specific silt distribution maps produced in this study provide important geotechnical inputs to enhance future landslide susceptibility assessments, improve slope stability analyses, and support risk-informed land-use planning for local authorities in geohazard-prone highland areas.
Downloads
[1] Assallay, A. M., Rogers, C. D. F., Smalley, I. J., & Jefferson, I. F. (1998). Silt: 2-62 μm, 9-4φ. Earth Science Reviews, 45(1–2), 61–88. doi:10.1016/S0012-8252(98)00035-X.
[2] Bhavya, K., & Nagaraj, H. B. (2025). Influence of soil structure and clay mineralogy on Atterberg limits. Scientific Reports, 15(1), 15459. doi:10.1038/s41598-025-98729-y.
[3] Samuel, A., & Dines, L. (2022). Lockhart and Wiseman’s Crop Husbandry Including Grassland. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/C2020-0-01095-9.
[4] Shahrokh, V., Bondi, G., Fahy, A., & O’Sullivan, L. (2025). Advancing Soil Compaction Assessment: A Comprehensive Study in Ireland. European Journal of Soil Science, 76(3), 70122. doi:10.1111/ejss.70122.
[5] Giannecchini, R., Zanon, A., & Barsanti, M. (2024). An Update on Rainfall Thresholds for Rainfall-Induced Landslides in the Southern Apuan Alps (Tuscany, Italy) Using Different Statistical Methods. Water (Switzerland), 16(5), 624. doi:10.3390/w16050624.
[6] He, X., Shi, W., Zhu, Y., Yan, L., Zhao, Y., & Wang, S. (2025). Coupled Effects of Fault-Related Groundwater Flow and Pore Water Pressure: Unraveling the Mechanisms of Deformation and Failure in Gentle Slopes. Arabian Journal for Science and Engineering, 50(18), 15015–15032. doi:10.1007/s13369-024-09925-3.
[7] Espinosa F, S. A., & El Naggar, M. H. (2024). Parametric Study of Rainfall-Induced Instability in Fine-Grained Sandy Soil. Geotechnics, 4(4), 1159–1174. doi:10.3390/geotechnics4040059.
[8] Roslee, R., Alexander, R. E., Sharir, K., Saidin, A., Warnana, D. D., Rochman, J. P. G. N., & Widodo, A. (2024). Mapping Debris Flow Susceptibility Using Frequency Ratio Model in Kundasang, Sabah, Malaysia. International Journal of Design & Nature and Ecodynamics, 19(5), 1581–1589. doi:10.18280/ijdne.190512.
[9] Rosli, M. I., Che Ros, F., Razak, K. A., Ambran, S., Kamaruddin, S. A., Anuar, A. N., Marto, A., Tobita, T., & Ono, Y. (2021). Modelling debris flow runout: A case study on the Mesilau Watershed, Kundasang, Sabah. Water (Switzerland), 13(19), 2667. doi:10.3390/w13192667.
[10] Roslee, R., Jamaluddin, T. A., & Talip, M. A. (2012). Landslide susceptibility mapping (LSM) at Kota Kinabalu, Sabah, Malaysia using factor analysis model (FAM). Journal of Advanced Science and Engineering Research, 2(1), 80-103.
[11] Sharir, K., Roslee, R., Ern, L. K., & Simon, N. (2017). Landslide Factors and susceptibility mapping on natural and artificial slopes in Kundasang, Sabah. Sains Malaysiana, 46(9), 1531–1540. doi:10.17576/jsm-2017-4609-23.
[12] Krishnan, R. B., Sharir, K., Baba, M. F., Mok, B., Warnana, D. D., Lestari, W., Dambul, R., Wen, W. Z., Ismail, A., & Roslee, R. (2025). Landslide Susceptibility Mapping Using Weights of Evidence Model: A Case Study from Pekan Nabalu to Kundasang, Sabah, Malaysia. International Journal of Design & Nature and Ecodynamics, 20(05), 1029–1036. doi:10.18280/ijdne.200508.
[13] Mohd Salleh, M. R., Norhairi, N. H. A., Ismail, Z., Abd Rahman, M. Z., Abdul Khanan, M. F., Asmadi, M. A., Razak, K. A., Tam, T. H., & Osman, M. J. (2022). Classification of Translational Landslide Activity using Vegetation Anomalies Indicator (Vai) in Kundasang, Sabah. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W3-2021, 247–256. doi:10.5194/isprs-archives-xlvi-4-w3-2021-247-2022.
[14] Roslee, R., Tahir, S., & Laming, A. (2005). Engineering Geological Investigation on Slope Failure along Bundu Tuhan to Kundasang Road, Sabah, Malaysia. Warta Geologi (Newsletter of the Geological Society of Malaysia), Geological Society of Malaysia (GSM), Kuala Lumpur, Malaysia.
[15] Dos, J. P., Roslee, R., Sharir, K., & Warnana, D. D. (2024). Quantitative Landslide Hazard Assessment Using Frequency Ratio Model: A Case Study from SMK Kundasang, Sabah, Malaysia. International Journal of Design and Nature and Ecodynamics, 19(3), 1007–1018. doi:10.18280/ijdne.190330.
[16] Roslee, R., Pirah, J. A., Madri, A. N., & Zikiri, M. F. (2020). Applicability of the Geological Strength Index (GSI) Classification for the Trusmadi Formation at Sabah, Malaysia. Earth Science Malaysia, 4(1), 77–81. doi:10.26480/esmy.01.2020.77.81.
[17] Jabatan Kerja Raya (JKR) Sabah. (2001). Report on Geotechnical Investigation and Conceptual Design of The Slope Remedial Works at KM93.3, Jalan Tamparuli – Ranau, Sabah. Jabatan Kerja Raya (JKR) Sabah, Kota Kinabalu, Malaysia.
[18] Rosli, M. I., Mohd Kamal, N. A., & Razak, K. A. (2021). Assessing Earthquake-induced Debris Flow Risk in the first UNESCO World Heritage in Malaysia. Remote Sensing Applications: Society and Environment, 23, 100550. doi:10.1016/j.rsase.2021.100550.
[19] IKRAM Sabah. (2000). Geotechnical Investigation Report into the Failure and Earth Movement at SMK Kundasang, Ranau, Sabah. IKRAM Sabah, Kota Kinabalu, Malaysia.
[20] Jabatan Kerja Raya (JKR) Sabah. (2001). Report on Geotechnical Investigation and Conceptual Design of The Slope Remedial Works at KM94.1, Jalan Tamparuli – Ranau, Sabah. Jabatan Kerja Raya (JKR) Sabah, Kota Kinabalu, Malaysia.
[21] Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3), 239–252. doi:10.1007/BF00889887.
[22] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119115151.
[23] Minnitt, R., Assibey-Bonsu, W., & Camisani-Calzolari, F. (2003). Keynote address: A tribute to Prof. DG Krige for his contributions over a period of more than half a century. Operations Research, 405-408.
[24] Pawlowsky-Glahn, V., & Olea, R. A. (2004). Geostatistical Analysis of Compositional Data. In Geostatistical Analysis of Compositional Data. Oxford University Press. doi:10.1093/oso/9780195171662.001.0001.
[25] Boumpoulis, V., Michalopoulou, M., & Depountis, N. (2023). Comparison between different spatial interpolation methods for the development of sediment distribution maps in coastal areas. Earth Science Informatics, 16(3), 2069–2087. doi:10.1007/s12145-023-01017-4.
[26] Ho, V. H., Morita, H., Ho, T. H., Bachofer, F., & Nguyen, T. T. (2025). Comparison of geostatistics, machine learning algorithms, and their hybrid approaches for modeling soil organic carbon density in tropical forests. Journal of Soils and Sediments, 25(5), 1554–1577. doi:10.1007/s11368-025-04027-5.
[27] Zarychta, R., & Zarychta, A. (2025). Application of geostatistical approach in generating DEM for relief studies using UAV in forest areas. Geomorphology, 487, 109916. doi:10.1016/j.geomorph.2025.109916.
[28] Zhakypbek, Y., Rysbekov, K., Lozynskyi, V., Mikhalovsky, S., Salmurzauly, R., Begimzhanova, Y., Kezembayeva, G., Yelikbayev, B., & Sankabayeva, A. (2025). Geospatial and Correlation Analysis of Heavy Metal Distribution on the Territory of Integrated Steel and Mining Company Qarmet JSC. Sustainability (Switzerland), 17(15), 7148. doi:10.3390/su17157148.
[29] Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC, New York, United States. doi:10.1201/b17115.
[30] Kokkala, A., & Marinos, V. (2022). An engineering geological database for managing, planning and protecting intelligent cities: The case of Thessaloniki city in Northern Greece. Engineering Geology, 301, 106617. doi:10.1016/j.enggeo.2022.106617.
[31] Chilès, J., & Delfiner, P. (2012). Geostatistics. Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118136188.
[32] Qu, L., Lu, H., Tian, Z., Schoorl, J. M., Huang, B., Liang, Y., Qiu, D., & Liang, Y. (2024). Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas. CATENA, 234, 107572. doi:10.1016/j.catena.2023.107572.
[33] Oliver, M. A., & Webster, R. (1990). Kriging: A method of interpolation for geographical information systems. International Journal of Geographical Information Systems, 4(3), 313–332. doi:10.1080/02693799008941549.
[34] Isaaks, E. (2005). The Kriging Oxymoron: A Conditionally Unbiased and Accurate Predictor (2nd Edition). In: Leuangthong, O., Deutsch, C.V. (eds) Geostatistics Banff 2004. Quantitative Geology and Geostatistics, 14. Springer, Dordrecht, Netherlands. doi:10.1007/978-1-4020-3610-1_37.
[35] Esri. (2014). ArcGIS Desktop (10.3). Esri, Kranzberg, Germany. Available online: http://www.esri.com/software/arcgis (accessed on December 2025).
[36] Nwaila, G., Tolmay, L., & Burnett, M. (2024). Geostatistics Notes for Practitioners. CRC Press, Boca Raton, United States. doi:10.1201/9781032650388.
[37] Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470517277.
[38] Liu, Y., Tian, G., Wang, S., Satyanaga, A., & Zhai, Q. (2022). Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration. Urban Science, 6(3), 54. doi:10.3390/urbansci6030054.
[39] BS 5930:2015. (2015). Code of practice for ground investigations (+A1:2020). British Standard International (BSI), London, United Kingdom.
[40] Baum, R. L., & Godt, J. W. (2010). Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides, 7(3), 259–272. doi:10.1007/s10346-009-0177-0.
[41] Tetteh, F. K., Abbey, S. J., Booth, C. A., & Nukah, P. D. (2025). Current understanding and uncertainties associated with climate change and the impact on slope stability: A systematic literature review. Natural Hazards Research, 5(3), 563–595. doi:10.1016/j.nhres.2025.01.011.
[42] Roslee, R., & Krishnan, R. B. (2023). Landslide susceptibility assessment in Sabah, Malaysia: A bivariate frequency ratio approach. Science, Engineering and Health Studies, 17. doi:10.69598/sehs.17.23020004.
[43] Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press, Oxford, United Kingdom. doi:10.1093/oso/9780195115383.001.0001.
[44] Sun, L., Zhou, J. L., Cai, Q., Liu, S., & Xiao, J. (2021). Comparing surface erosion processes in four soils from the Loess Plateau under extreme rainfall events. International Soil and Water Conservation Research, 9(4), 520–531. doi:10.1016/j.iswcr.2021.06.008.
[45] Szabó, J. A., Keller, B., Centeri, C., Hatvani, I. G., Kovács, J., Szalai, Z., & Jakab, G. (2023). Varying particle size selectivity of soil erosion along a cultivated catena. Open Geosciences, 15(1), 20220585. doi:10.1515/geo-2022-0585.
[46] Zhu, F., Li, Y., & Cheng, J. (2021). Size characteristics of sediments eroded under different Masson pine litter covers in south China. Water (Switzerland), 13(16), 2190. doi:10.3390/w13162190.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















