Physico-mechanical Behaviors and Durability of Heated Fiber Concrete

Redha Benali, Mekki Mellas, Mohamed Baheddi, Tarek Mansouri, Rafik Boufarh

Abstract


The objective of the present manuscript is to describe the impact of polypropylene fibers on the behavior of heated concrete subjected to heating and cooling cycles at temperatures of 200, 450 and 600 °C respectively for six hours, through a series of experimental tests on mass loss, water absorption, porosity, compressive and tensile strength. For this purpose, mixes were prepared with a water/cement ratio with the incorporation of polypropylene fibers with a rate varying from 0.5 to 1.5%. These fibers were added in order to improve the thermal stability and to prevent the concrete from splitting. The results show that a considerable loss of strength was noticed for all tested specimens. The relative compressive strengths of the concretes containing polypropylene fibers were higher than those of the concretes without fibers. Also, a greater loss of mass of the polypropylene fibers compared to those without fibers was noticed when increasing the temperature. The flexural tensile strength of the concrete was more sensitive to elevated temperatures than the compressive strength and a rapid increase in porosity was observed for the fiber-reinforced concrete compared to the reference concrete. Furthermore, water absorption by the fibers is proportional to the fiber content of the concrete.

 

Doi: 10.28991/cej-2021-03091745

Full Text: PDF


Keywords


Concrete; Temperature; Polypropylene Fibers; Mechanical Properties; Physical Properties; Heating-Cooling.

References


Kalifa, Pierre, Grégoire Chéné, and Christophe Gallé. “High-Temperature Behaviour of HPC with Polypropylene Fibres.” Cement and Concrete Research 31, no. 10 (October 2001): 1487–1499. doi:10.1016/s0008-8846(01)00596-8.

Mindeguia, J. C. “Experimental Contribution to Understanding Thermal Instability Risks of Concrete.” University of Pau et des pays de l’Adour, (2009).

Pliya, P. “Contribution Des Fibres de Polypropylène et Métalliques à l’amélioration Du Comportement Du Béton Soumis à Une Température Élevée.”, (2010).

Haniche, R. “Contribution à l’étude Des Bétons Portés En Température/Evolution Des Propriétés de Transfert : Etude de l’éclatement.” Lyon, INSA, (2011).

Yermak, N. “Comportement à Hautes Températures Des Bétons Additionnés de Fibres.”, (2015).

Noumowé, Albert, Alain Lefevre, and Roger Duval. “Porosité Supplémentaire Consécutive à La Fusion de Fibres de Polypropylène Dans Un Béton à Hautes Performances.” Revue Française de Génie Civil 6, no. 2 (January 2002): 301–313. doi:10.1080/12795119.2002.9692366.

Hager, I. “High-Temperature Behaviour of High-Performance Concrete-Evolution of the Main Mechanical Properties PhD Thesis, Ecole National Des Ponts et Chaussées and Polytechnic School of Croatia.”, (2004).

Xiao, Jianzhuang, and H. Falkner. “On Residual Strength of High-Performance Concrete with and Without Polypropylene Fibres at Elevated Temperatures.” Fire Safety Journal 41, no. 2 (March 2006): 115–121. doi:10.1016/j.firesaf.2005.11.004.

Phan, L. T., J. R. Lawson, and F. L. Davis. “Effects of Elevated Temperature Exposure on Heating Characteristics, Spalling, and Residual Properties of High Performance Concrete.” Materials and Structures 34, no. 2 (March 2001): 83–91. doi:10.1007/bf02481556.

Malier, Y. “High Performance Concrete: Characterization, Durability, Applications: Report on the Scientific Work of the National Project New Ways of Material Concrete” Presses of l ’Ecole Nationale Des Ponts et Chaussées.”, (1992).

Noumowe, Albert. “Effet de Hautes Températures (20-600°C) Sur Le Béton : Cas Particulier Du Béton à Hautes Performances.” Lyon, INSA, (1995).

Khoury, G. A., and B. Willoughby. “Polypropylene Fibres in Heated Concrete. Part 1: Molecular Structure and Materials Behaviour.” Magazine of Concrete Research 60, no. 2 (March 2008): 125–136. doi:10.1680/macr.2008.60.2.125.

Phan, L. T. “Code Provisions for High Strength Concrete Strength-Temperature Relationship at Elevated Temperatures.” Materials and Structures 36, no. 256 (January 25, 2003): 91–98. doi:10.1617/13811.

Behnood, Ali, and Masoud Ghandehari. “Comparison of Compressive and Splitting Tensile Strength of High-Strength Concrete with and Without Polypropylene Fibers Heated to High Temperatures.” Fire Safety Journal 44, no. 8 (November 2009): 1015–1022. doi:10.1016/j.firesaf.2009.07.001.

Toumi, B. “Study of the Influence of High Temperatures on the Behaviour of Concrete”. PhD Thesis. Mentouri Constantine University, Algeria, (2010).

Laneyrie, C. “Valorisation Des Déchets de Chantiers Du BTP : Comportement à Haute Température Des Bétons Des Granulats Recyclés.”, (2014).

Chen, Bing, and Juanyu Liu. “Residual Strength of Hybrid-Fiber-Reinforced High-Strength Concrete after Exposure to High Temperatures.” Cement and Concrete Research 34, no. 6 (June 2004): 1065–1069. doi:10.1016/j.cemconres.2003.11.010.

Suhaendi, Sofren Leo, and Takashi Horiguchi. “Effect of Short Fibers on Residual Permeability and Mechanical Properties of Hybrid Fibre Reinforced High Strength Concrete after Heat Exposition.” Cement and Concrete Research 36, no. 9 (September 2006): 1672–1678. doi:10.1016/j.cemconres.2006.05.006.

Aydın, Serdar, Halit Yazıcı, and Bülent Baradan. “High Temperature Resistance of Normal Strength and Autoclaved High Strength Mortars Incorporated Polypropylene and Steel Fibers.” Construction and Building Materials 22, no. 4 (April 2008): 504–512. doi:10.1016/j.conbuildmat.2006.11.003.

Harada, T., J. Takeda, S. Yamane, and F. J. S. P. Furumura. "Strength, elasticity and thermal properties of concrete subjected to elevated temperatures." Special Publication 34 (1972): 377-406.

Chang, Y.F., Y.H. Chen, M.S. Sheu, and G.C. Yao. “Residual Stress–strain Relationship for Concrete after Exposure to High Temperatures.” Cement and Concrete Research 36, no. 10 (October 2006): 1999–2005. doi:10.1016/j.cemconres.2006.05.029.

Ríos, José D., Héctor Cifuentes, Carlos Leiva, Celia García, and María D. Alba. “Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures.” Journal of Materials in Civil Engineering 30, no. 11 (November 2018): 04018271. doi:10.1061/(asce)mt.1943-5533.0002491.

Thanaraj, Daniel Paul, Anand N., and Prince Arulraj. “Experimental Investigation of Mechanical Properties and Physical Characteristics of Concrete Under Standard Fire Exposure.” Journal of Engineering, Design and Technology 17, no. 5 (August 10, 2019): 878–903. doi:10.1108/jedt-09-2018-0159.

Thanaraj, Daniel Paul, N Anand, G Prince Arulraj, and Ehab Zalok. “Post-Fire Damage Assessment and Capacity Based Modeling of Concrete Exposed to Elevated Temperature.” International Journal of Damage Mechanics 29, no. 5 (October 16, 2019): 748–779. doi:10.1177/1056789519881484.

V., Sachin, and N. Suresh. “Residual Properties of Normal-Strength Concrete Subjected to Fire and Sustained Elevated Temperatures: A Comparative Study.” Journal of Structural Fire Engineering 12, no. 1 (October 8, 2020): 1–16. doi:10.1108/jsfe-02-2020-0007.

Mathews, Mervin Ealiyas, Tattukolla Kiran, Vellamaddi Chinmaya Hasa Naidu, G. Jeyakumar, and N. Anand. “Effect of High-Temperature on the Mechanical and Durability Behaviour of Concrete.” Materials Today: Proceedings 42 (2021): 718–725. doi:10.1016/j.matpr.2020.11.153.

Ollivier, Jean-Pierre. “Durabilité́ Des Bétons, Méthodes Recommandées Pour La Mesure Des Grandeurs Associées À La Durabilité́.” Toulouse: Institut National des Sciences Appliquées, Université́ Paul Sabatier, (1997).

Dreux, G., and J. Festa. “New Guide of Concrete and Its Constituents.” Paris, France, (1998).

Kanéma, M. “Influence of Formulation Parameters on High Behaviour Concrete Temperature.” Cergy Pontoise University, France, (2007).

Assié, S. “Durabilité Des Bétons Autoplacants Thèse de Doctorat de l’institut National Des Sciences Appliquées Toulouse Octobre.”, (2004).


Full Text: PDF

DOI: 10.28991/cej-2021-03091745

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Redha Benali

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message