Resource Assessment of Limestone Based on Engineering and Petrographic Analysis
Downloads
Doi: 10.28991/CEJ-2022-08-03-02
Full Text: PDF
[2] Gkouma, M., Karkanas, P., & Iacovou, M. (2021). A geoarchaeological study of the construction of the Laona tumulus at Palaepaphos, Cyprus. Geoarchaeology, 36(4), 601–616. doi:10.1002/gea.21850.
[3] Naeem, M., Zafar, T., Karim, M. A. M., Miraj, M. A. F., Sanaullah, M., Bashir, R., & Abbas, S. (2021). Aggregate prospects of pirkoh limestone from gulki-rodo area of Pakistan as a potential construction material. Himalayan Geology (42) 2, 382–387.
[4] Gorospe, K., Booya, E., Ghaednia, H., & Das, S. (2019). Effect of various glass aggregates on the shrinkage and expansion of cement mortar. Construction and Building Materials, 210, 301–311. doi:10.1016/j.conbuildmat.2019.03.192.
[5] Koukis, G., Sabatakakis, N., & Spyropoulos, A. (2007). Resistance variation of low-quality aggregates. Bulletin of Engineering Geology and the Environment, 66(4), 457–466. doi:10.1007/s10064-007-0098-x.
[6] Tanyu, B. F., Yavuz, A. B., & Ullah, S. (2017). A parametric study to improve suitability of micro-deval test to assess unbound base course aggregates. Construction and Building Materials, 147, 328–338. doi:10.1016/j.conbuildmat.2017.04.173.
[7] PŠ™ikryl, R. (2021). Geomaterials as construction aggregates: a state-of-the-art. Bulletin of Engineering Geology and the Environment, 80(12), 8831–8845. doi:10.1007/s10064-021-02488-9.
[8] Naeem, M., Khalid, P., & Anwar, A. W. (2015). Construction material prospects of granitic and associated rocks of Mansehra area, NW Himalaya, Pakistan. Acta Geodaetica et Geophysica, 50(3), 307–319. doi:10.1007/s40328-014-0087-z.
[9] Ndukauba, E., & Akaha, C. T. (2012). Engineering-Geological Evaluation of Rock Materials from Bansara, Bamenda Massif Southeastern Nigeria, as Aggregates for Pavement Construction. Evaluation, 2(5), 107–111. doi:10.5923/j.geo.20120205.01.
[10] Huang, Y., Bird, R., & Heidrich, O. (2009). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17(2), 283–296. doi:10.1016/j.jclepro.2008.06.005.
[11] Gondal, M. M. I., Ahsan, N., & Javid, A. Z. (2009). Engineering Properties of Potential Aggregate Resources from Eastern and Central Salt Range, Pakistan. Geological Bulletin of Punjab University, 44, 97–104.
[12] Naeem, M., Khalid, P., Sanaullah, M., & Zia ud Din. (2014). Physio-mechanical and aggregate properties of limestones from Pakistan. Acta Geodaetica et Geophysica, 49(3), 369–380. doi:10.1007/s40328-014-0054-8.
[13] Khan, S. (2000). Study of the Geology of Kirana Group, Central Punjab and Evaluation of its Utilization and Economlc Potential as Aggregate. PhD Thesis, University of the Punjab, Lahore, Pakistan.
[14] Ullah, R., Ullah, S., Rehman, N., Ali, F., Asim, M., Tahir, M., Ullah, S., & Muhammad, S. (2020). Aggregate Suitability of the Late Permian Wargal Limestone at Kafar Kot Chashma Area, Khisor Range, Pakistan. International Journal of Economic and Environmental Geology, 11(1), 89–94. doi:10.46660/ojs.v11i1.418.
[15] Ersoy, H., Karahan, M., Kolaylı, H., & Sünnetci, M. O. (2020). Influence of Mineralogical and Micro-Structural Changes on the Physical and Strength Properties of Post-thermal-Treatment Clayey Rocks. Rock Mechanics and Rock Engineering, 54(2), 679–694. doi:10.1007/s00603-020-02282-1.
[16] Gu, X., Li, X., Zhang, W., Gao, Y., Kong, Y., Liu, J., & Zhang, X. (2021). Effects of HPMC on Workability and Mechanical Properties of Concrete Using Iron Tailings as Aggregates. Materials, 14(21), 6451. doi:10.3390/ma14216451.
[17] Zarif, I. H., & Tuǧrul, A. (2003). Aggregate properties of Devonian limestones for use in concrete in Istanbul, Turkey. Bulletin of Engineering Geology and the Environment, 62(4), 379–388. doi:10.1007/s10064-003-0205-6.
[18] Nweke, O. M., & Okogbue, C. O. (2021). Geotechnical evaluation of the quality and durability of argillites from Abakaliki Metropolis (Southeastern Nigeria) as road aggregates. Arabian Journal of Geosciences, 14(22). doi:10.1007/s12517-021-08613-y.
[19] Ramsay, D. M., Dhir, R. K., & Spence, I. M. (1974). The role of rock and clast fabric in the physical performance of crushed-rock aggregate. Engineering Geology 8(3), 267–285. doi:10.1016/0013-7952(74)90002-7.
[20] Lees, G., & Kennedy, C. K. (1975). Quality, Shape and Degradation of Aggregates. Quarterly Journal of Engineering Geology and Hydrogeology, 8(3), 193–209. doi:10.1144/gsl.qjeg.1975.008.03.03.
[21] Abbas, S. M. (2012). Geology and Structure of the Westernmost Hill Range, Sadda Area, Kurram Agency, Northwest. Master Thesis, National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan.
[22] Gansser-Biaggi, A. (1964). Geology of the Himalayas. London, Interscience Publisher, New York, United States.
[23] Badshah, M. S., Gnos, E., Jan, M. Q., & Afridi, M. I. (2000). Stratigraphic and tectonic evolution of the northwestern Indian plate and Kabul block. Geological Society Special Publication, 170(1), 467–476. doi:10.1144/GSL.SP.2000.170.01.25.
[24] Meissner, C. R., Hussain, M., Rashid, M. A., & Sethi, U. B. (1975). Geology of the Parachinar Quadrangle, Pakistana. U.S. Govt. Print. Off. doi:10.3133/pp716f
[25] Beck, R. A., Burbank, D. W., Sercombe, W. J., Khan, A. M., & Lawrence, R. D. (1996). Late cretaceous ophiolite obduction and paleocene india-asia collision in the westernmost himalaya. Geodinamica Acta, 9(2–3), 114–144. doi:10.1080/09853111.1996.11105281.
[26] Davies, L. M. (1930). The fossil fauna of the Samana Range and some neighbouring areas, The Palaeocene Foraminifera/by LM Davies. Calcutta Publishers, Kolkata, India.
[27] Shah, S. (1977). Stratigraphy of Pakistan, volume 12 of the Geological Survey of Pakistan Islamabad, Director General, Geological Survey of Pakistan, Western City, Pakistan.
[28] Fatmi, A. N. (1974). Lithostratigraphic units of the kohat-potwar province, Indus basin, Pakistan: a report of the stratigraphic committee of Pakistan. Geological Survey of Pakistan, Western City, Pakistan.
[29] ASTM D75-87. (1992). Standard practice for sampling aggregates. ASTM International, Pennsylvania, United States.
[30] AASHTO, (2014). Standard specifications for transportation materials and methods of sampling and testing. AASHTO provisional standards. The American Association of State Highway and Transportation Officials, Washington, United States.
[31] ASTM C125-03. (2003). Standard terminology relating to concrete and concrete aggregates. ASTM International, Pennsylvania, United States.
[32] Johnson, R.B., & DeGraff, J. V. (1988). Principles of engineering geology. John Wiley & Sons, New Jersey, United States.
[33] Dunham, R. J., (1962). Classification of Carbonate Rocks According to Depositional Texture. Classification of Carbonate Rocks”A Symposium, American Association of Petroleum Geologists, Oklahoma, United States. doi:10.1306/M1357.
[34] Kandhal, P. S., Mallick, R. B., & Huner, M. (2000). Measuring bulk-specific gravity of fine aggregates: Development of new test method. Transportation Research Record, 1721(1721), 81–90. doi:10.3141/1721-10.
[35] Tsikouras, B., Pomonis, P., Rigopoulos, I., & Hatzipanagiotou, K. (2005). Investigation for the suitability of basic ophiolitic rocks from the Mikroklissoura Grevena area as anti-skid aggregate material and railroad ballast. In Proc. of the 2nd Conference of the Committee of Economical Geology, Mineralogy and Geochemistry, Athens, Greece, 347-356.
[36] Mpalatsas, I., Rigopoulos, I., Tsikouras, Î’., & Hatzipanagiotou, K. (2010). Suitability assessment of gretageous limestones from Thermo (Aitolokarnania, Western Greece) for their use as base and sub-base aggregates in road-construction. Bulletin of the Geological Society of Greece, 43(5), 2501-2509. doi:10.12681/bgsg.11656.
[37] Jethro, M. A., Shehu, S. A., & Olaleye, B. (2014). The suitability of some selected granite deposits for aggregate stone production in road construction. Geology, 60(431), 0011.
[38] AASHTO T 85, (2014). Standard Method of Testing for Specific gravity and absorption of coarse aggregate. The American Association of State Highway and Transportation Officials, Washington, United States.
[39] BS-812-105.1 (1989). Testing aggregates. Methods for determination of particle shape flakiness index. British Standards Institution, London, United Kingdom.
[40] BS 812-105.2 (1990). Testing aggregates. Methods for determination of particle shape. Elongation index of coarse aggregate (British standard). British Standards Institution, London, United Kingdom.
[41] ASTM C131-06. (2006). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM International, Pennsylvania, United States.
[42] AASHTO-T-104-99. (2007). Standard method of test for soundness of aggregate by use of sodium sulfate or magnesium sulfate. The American Association of State Highway and Transportation Officials, Washington, United States.
[43] BS-812-112. (1990). Testing aggregates method for determination of aggregate impact value (AIV). British Standards Institution, London, United Kingdom.
[44] BS-812-110. (1990). Testing aggregates methods for determination of aggregate crushing value (ACV). British Standards Institution, London, United Kingdom.
[45] ASTM C29 (2009). Standard test method for bulk density ("Unit Weight”) and voids in aggregate. American Society for Testing and Materials, Annual Book, Pennsylvania, USA.
[46] AASHTO-T-182-84. (2002). Standard method for coating and stripping of bitumen-aggregate mixtures. The American Association of State Highway and Transportation Officials, Washington, United States.
[47] Irfan, T. Y. (1996). Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Quarterly Journal of Engineering Geology, 29(1), 5–35. doi:10.1144/GSL.QJEGH.1996.029.P1.02.
[48] Ahsan, N., & Gondal, M. M. I. (2016). Aggregate suitability studies of limestone outcrops in Dhak pass, western Salt range, Pakistan. International Journal of Agriculture and Applied Sciences (Pakistan).
[49] Flügel, E. (2004). Depositional Models, Facies Zones and Standard Microfacies. Microfacies of Carbonate Rocks, 657–724. doi:10.1007/978-3-662-08726-8_14.
[50] Peng, J., Wu, X., Ni, S., Wang, J., Song, Y., & Cai, C. (2022). Investigating intra-aggregate microstructure characteristics and influencing factors of six soil types along a climatic gradient. CATENA, 210, 105867. doi:10.1016/j.catena.2021.105867.
[51] Chen, J. S., Shiah, M. S., & Chen, H. J. (2001). Quantification of Coarse Aggregate Shape and Its Effect on Engineering Properties of Hot-Mix Asphalt Mixtures. In Journal of Testing and Evaluation 29(6), 513–519. doi:10.1520/jte12396j.
[52] Ahsan, N., & Gondal, M. M. I. (2016). Aggregate suitability studies of limestone outcrops in Dhak pass, western Salt range, Pakistan. International Journal of Agriculture and Applied Sciences, 4(2), 69-75.
[53] Blyth, F.G.H. and De Freitas, M.H. (1974). A Geology of Engineers. ELBS and Edward Arnold, London, United Kingdom.
[54] Lees, G., & Kennedy, C. K. (1975). Quality, Shape and Degradation of Aggregates. Quarterly Journal of Engineering Geology and Hydrogeology, 8(3), 193–209. doi:10.1144/gsl.qjeg.1975.008.03.03.
[55] Hassan, E. U., Hannan, A., Rashid, M. U., Ahmed, W., Zeb, M. J., Khan, S., ... Ahmad, A. (2020). Resource assessment of Sakesar limestone as aggregate from salt range Pakistan based on geotechnical properties. International Journal of Hydrology, 4(1), 24–29. doi:10.15406/ijh.2020.04.00222.
[56] Croney, D., & Croney, P. (1991). The design and performance of road pavements. McGraw Hill Professional, New York, United States.
[57] Zhang, D., Cheng, Z., Geng, D., Xie, S., & Wang, T. (2022). Experimental and Numerical Analysis on Mesoscale Mechanical Behavior of Coarse Aggregates in the Asphalt Mixture during Gyratory Compaction. Processes 10(1), 47. doi:10.3390/pr10010047.
[58] Carlos, A., Masumi, I., Hiroaki, M., Maki, M., & Takahisa, O. (2010). The effects of limestone aggregate on concrete properties. In Construction and Building Materials, 24(12), 2363–2368. doi:10.1016/j.conbuildmat.2010.05.008.
[59] Pouranian, M. R., & Haddock, J. E. (2018). Determination of voids in the mineral aggregate and aggregate skeleton characteristics of asphalt mixtures using a linear-mixture packing model. In Construction and Building Materials 188, 292–304. doi:10.1016/j.conbuildmat.2018.08.101.
[60] Williams, S. G., & Cunningham, J. B. (2012). Evaluation of aggregate durability performance test procedures. Final Report, TRC-0905, University of Arkansas, Arkansas, United States. Available online: https://www.ardot.gov/wp-content/uploads/2020/11/TRC0905_Evaluation_of_Aggregate_Durability_Performance_Test_Procedures.pdf (accessed on December 2021).
[61] Fournari, R., & Ioannou, I. (2019). Correlations between the properties of crushed fine aggregates. Minerals 9(2), 86. doi:10.3390/min9020086.
[62] Kazmi, D., Serati, M., Williams, D. J., Qasim, S., & Cheng, Y. P. (2021). The potential use of crushed waste glass as a sustainable alternative to natural and manufactured sand in geotechnical applications. Journal of Cleaner Production 284, 124762. doi:10.1016/j.jclepro.2020.124762.
[63] Bayane, B. M., & Yanjun, Q. (2017). Evaluation of physical and mechanical properties of quarry stones in the southern Republic of Benin. Journal of Sustainable Development of Transport and Logistics 2(1), 61–66. doi:10.14254/jsdtl.2017.2-1.6.
[64] Neville, A. M. (1995). Properties of concrete (4th Ed.). Longman Scientific and Technical, London, United Kingdom.
[65] Smith, M.R., Collis, L. (2001). Aggregates: sand, gravel and crushed rock aggregates for construction purposes (3rd Edi.). Geological Society, London, United Kingdom, Engineering Geology Special Publications, 17(1). doi:10.1144/gsl.eng.2001.017.
[66] Mitchell, C. (2007). GoodQuarry Quarry Fines and Waste. British Geological Survey, London, United Kingdom.
[67] Demez, A., & Karakoç, M. B. (2020). Mechanical properties of high strength concrete made with pyrophyllite aggregates exposed to high temperature. Structural Concrete, 22(S1), E769–E778. doi:10.1002/suco.201900381.
[68] Fookes, P. G., Gourley, C. S., & Ohikere, C. (1988). Rock weathering in engineering time. Quarterly Journal of Engineering Geology and Hydrogeology, 21(1), 33–57. doi:10.1144/gsl.qjeg.1988.021.01.03.
[69] Verma, A., Babu, V. S., & Arunachalam, S. (2022). Characterization of recycled aggregate by the combined method: Acid soaking and mechanical grinding technique. Materials Today: Proceedings, 49, 230–238. doi:10.1016/j.matpr.2021.01.842.
[70] West, G. (1996). Alkali-aggregate reaction in concrete roads and bridges. In Alkali-aggregate reaction in concrete roads and bridges. Thomas Telford. doi:10.1680/aricrab.20696.
[71] Masad, E., Panoskaltsis, V. P., & Wang, L. (2006). Asphalt Concrete: Simulation, Modeling, and Experimental Characterization. In Proceedings of the R. Lytton Symposium on Mechanics of Flexible Pavements (June 1-3, 2005), Louisiana, United States. doi:10.1061/9780784408254.
[72] Read, J., & Whiteoak, D. (2003). The shell bitumen handbook (5th Edi.). Thomas Telford, London, United Kingdom.
[73] Abo-Qudais, S., & Al-Shweily, H. (2007). Effect of aggregate properties on asphalt mixtures stripping and creep behavior. Construction and Building Materials (Vol. 21, Issue 9, pp. 1886–1898). doi:10.1016/j.conbuildmat.2005.07.014.
[74] Hamedi, G. H., Sahraei, A., & Esmaeeli, M. R. (2021). Investigate the effect of using polymeric anti-stripping additives on moisture damage of hot mix asphalt. European Journal of Environmental and Civil Engineering (Vol. 25, Issue 1, pp. 90–103). doi:10.1080/19648189.2018.1517697.
[75] Li, Q., Xu, F., Zheng, H., Shi, J., & Zhang, J. (2022). Experimental Study on Freeze-Thaw Effects on Creep Characteristics of Rubber Concrete. Advances in Materials Science and Engineering (Vol. 2022). doi:10.1155/2022/9182729.
[76] Hussain, J., Zhang, J., Fitria, F., Shoaib, M., Hussain, H., Asghar, A., & Hussain, S. (2022). Aggregate Suitability Assessment of Wargal Limestone for Pavement Construction in Pakistan. Open Journal of Civil Engineering, 12(01), 56–74. doi:10.4236/ojce.2022.121005.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.