Engineering and Durability Properties of Modified Coconut Shell Concrete
Downloads
Doi: 10.28991/CEJ-2022-08-02-013
Full Text: PDF
[2] Patel, A. J., Patel, V. M., & Patel, M. A. (2015). Review on partial replacement of cement in concrete. UKIERI concrete congress–concrete research driving profit and sustainability, Vol. 1, No. 7, pp. 831-837, Punjab, India.
[3] Azeez, S., Raju, R., & Pillai, P. S. (2015). Partial Replacement of Fine Aggregate & Cement in Concrete with Ceramic Rejects. International Journal of Engineering Trends and Technology, 28(5), 243–247. doi:10.14445/22315381/ijett-v28p247.
[4] McCarthy, M. J., & Dyer, T. D. (2019). Pozzolanas and pozzolanic materials. Lea's Chemistry of Cement and Concrete (pp. 363–467). doi:10.1016/B978-0-08-100773-0.00009-5.
[5] Shraddhu, S. (2021). Types of Pozzolanic Materials /Admixtures/Concrete Technology. Engineering Note. Available online: https://www.engineeringenotes.com/concrete-technology/admixtures/types-of-pozzolanic-materials-admixtures-concrete-technology/32120 (accessed on November 2021).
[6] Sargent, P. (2015). The development of alkali-activated mixtures for soil stabilisation. In Handbook of Alkali-Activated Cements, Mortars and Concretes (pp. 555–604). Woodhead, Cambridge, United Kingdom. doi:10.1533/9781782422884.4.555.
[7] Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in lowland and other environments. American Society of Civil Engineers (ASCE), Virginia, United States.
[8] Bassuoni, M. T., & Nehdi, M. L. (2007). Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cement and Concrete Research, 37(7), 1070–1084. doi:10.1016/j.cemconres.2007.04.014.
[9] Attiogbe, E. K., & Rizkalla, S. H. (1988). Response of concrete to sulfuric acid attack. ACI materials journal, 85(6), 481-488. doi: 10.14359/2210.
[10] Rafeeq Ahmed, S., & Munirudrappa, N. (1998). Effect of sulphuric acid on plasticized concrete. Indian Journal of Engineering and Materials Sciences, (5)5, 291–294.
[11] Aydın, S., Yazıcı, H., Yiğiter, H., & Baradan, B. (2007). Sulfuric acid resistance of high-volume fly ash concrete. Building and Environment, 42(2), 717-721. doi:10.1016/j.buildenv.2005.10.024.
[12] Monteny, J., De Belie, N., Vincke, E., Verstraete, W., & Taerwe, L. (2001). Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cement and Concrete Research, 31(9), 1359–1365. doi:10.1016/S0008-8846(01)00565-8.
[13] Torii, K., & Kawamura, M. (1994). Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack. Cement and Concrete Research, 24(2), 361–370. doi:10.1016/0008-8846(94)90063-9.
[14] Roy, D. M., Arjunan, P., & Silsbee, M. R. (2001). Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research, 31(12), 1809–1813. doi:10.1016/S0008-8846(01)00548-8.
[15] Koushkbaghi, M., Kazemi, M. J., Mosavi, H., & Mohseni, E. (2019). Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Construction and Building Materials, 202, 266–275. doi:10.1016/j.conbuildmat.2018.12.224.
[16] Jerlin Regin, J., Vincent, P., & Ganapathy, C. (2017). Effect of Mineral Admixtures on Mechanical Properties and Chemical Resistance of Lightweight Coconut Shell Concrete. Arabian Journal for Science and Engineering, 42(3), 957–971. doi:10.1007/s13369-016-2240-1.
[17] BS 8110-1. (1997). Structural use of concrete-Part 1: code of practice for design and construction. British Standards, London, United Kingdom.
[18] Guo, Z., & Shi, X. (2011). Experiment and calculation of reinforced concrete at elevated temperatures. Tsinghua university centenary celebration, Elsevier. doi:10.1016/c2010-0-65988-8
[19] Yang, H., Zhao, H., & Liu, F. (2018). Residual cube strength of coarse RCA concrete after exposure to elevated temperatures. Fire and Materials, 42(4), 424–435. doi:10.1002/fam.2508.
[20] Shety, M. S. (2014). Concrete technology-theory and practice (6th Ed.). S. Chand and Company Ltd, New Delhi, India.
[21] Osuji, S., & Ukeme, U. (2015). Effects of Elevated Temperature on Compressive Strength of Concrete: A Case Study of Grade 40 Concrete. Nigerian Journal of Technology, 34(3), 472. doi:10.4314/njt.v34i3.7.
[22] Asadi, I., Shafigh, P., Hassan, Z. F. B. A., & Mahyuddin, N. B. (2018). Thermal conductivity of concrete–A review. Journal of Building Engineering, 20, 81-93. doi:10.1016/j.jobe.2018.07.002.
[23] Sukontasukkul, P., Uthaichotirat, P., Sangpet, T., Sisomphon, K., Newlands, M., Siripanichgorn, A., & Chindaprasirt, P. (2019). Thermal properties of lightweight concrete incorporating high contents of phase change materials. Construction and Building Materials, 207, 431–439. doi:10.1016/j.conbuildmat.2019.02.152.
[24] Mathew, S. P., Nadir, Y., & Arif, M. M. (2020). Experimental study of thermal properties of concrete with partial replacement of coarse aggregate by coconut shell. Materials Today: Proceedings, 27, 415–420. doi:10.1016/j.matpr.2019.11.249.
[25] Gunasekaran, K., Annadurai, R., & Kumar, P. S. (2015). A study on some durability properties of coconut shell aggregate concrete. Materials and Structures, 48(5), 1253-1264. doi:10.1617/s11527-013-0230-2.
[26] BS EN 197-1. (2000). Cement. Composition, specifications and conformity criteria for common cements. British Standard Institute, London, United Kingdom.
[27] Popovics, S. (1992). Concrete Materials: Properties, Specifications and Testing (2nd Ed.). Noyes, New Jersey, United States,
[28] BS EN 1097. (2013). Test for Mechanical and Physical Properties of Aggregates. British standard institute, London, United Kingdom. doi:10.3403/BSEN1097.
[29] BS 882. (1992). Specification for Aggregates from Natural Sources for Concrete. British standard institute, London, United Kingdom.
[30] Orasugh, J. T., Ghosh, S. K., & Chattopadhyay, D. (2020). Nanofiber-reinforced biocomposites. Fiber-Reinforced Nanocomposites: Fundamentals and Applications, 199–233. doi:10.1016/b978-0-12-819904-6.00010-4.
[31] Lin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances, 32(4), 711–726. doi:10.1016/j.biotechadv.2013.11.006.
[32] Zaid, O., Ahmad, J., Siddique, M. S., Aslam, F., Alabduljabbar, H., & Khedher, K. M. (2021). A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Scientific Reports, 11(1). doi:10.1038/s41598-021-92228-6.
[33] BS 1881-103. (1993). Testing concrete-Part 103: Method for determination of compacting factor. British Standard Institute, London, United Kingdom.
[34] BS 1881-102. (1983). Testing concrete -Part 102: Method for determination of slump. British Standard Institute, London, United Kingdom.
[35] ASTM C267. (2020). Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International, Pennsylvania, United States.
[36] Allawi, A. A., & Ali, S. I. (2020). Flexural Behavior of Composite GFRP Pultruded I-Section Beams under Static and Impact Loading. Civil Engineering Journal, 6(11), 2143–2158. doi:10.28991/cej-2020-03091608.
[37] Duy Nguyen, P., Hiep Dang, V., Anh Vu, N., & Eduardovich, P. A. (2020). Long-term Deflections of Hybrid GFRP/Steel Reinforced Concrete Beams under Sustained Loads. Civil Engineering Journal, 6, 1–11. doi:10.28991/cej-2020-sp(emce)-01.
[38] Alengaram, U. J., Jumaat, M. Z., & Mahmud, H. (2008). Influence of sand content and silica fume on mechanical properties of palm kernel shell concrete. International Conference on Construction and Building Technology ICCBT, 23, 251–262, Kuala Lumpur, Malaysia.
[39] Gunasekaran, K., Annadurai, R., & Kumar, P. S. (2012). Long term study on compressive and bond strength of coconut shell aggregate concrete. Construction and Building Materials, 28(1), 208–215. doi:10.1016/j.conbuildmat.2011.08.072.
[40] Ann Adajar, M., Galupino, J., Frianeza, C., Faye Aguilon, J., SY, J. B., & Tan, P. A. (2020). Compressive Strength and Durability of Concrete with Coconut Shell Ash as Cement Replacement. International Journal of GEOMATE, 17, 183–190. doi:10.21660/2020.70.9132.
[41] Bayasi, Z., & Soroushian, P. (1989). Optimum use of pozzolanic materials in steel fiber reinforced concrete. Transportation Research Record, 1226, 25–30.
[42] Bheel, N., Mahro, S. K., & Adesina, A. (2021). Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete. Environmental Science and Pollution Research, 28(5), 5682–5692. doi:10.1007/s11356-020-10882-1.
[43] Iffat, S. (2015). Relation between density and compressive strength of hardened concrete. Concrete Research Letters, 6(4), 182-189.
[44] Kanojia, A., & Jain, S. K. (2017). Performance of coconut shell as coarse aggregate in concrete. Construction and Building Materials, 140, 150–156. doi:10.1016/j.conbuildmat.2017.02.066.
[45] Gunasekaran, K., Kumar, P. S., & Lakshmipathy, M. (2011). Mechanical and bond properties of coconut shell concrete. Construction and Building Materials, 25(1), 92–98. doi:10.1016/j.conbuildmat.2010.06.053.
[46] Adesina, A., & Awoyera, P. (2019). Overview of trends in the application of waste materials in self-compacting concrete production. SN Applied Sciences, 1(9), 962. doi:10.1007/s42452-019-1012-4.
[47] Awoyera, P. O., Adesina, A., & Gobinath, R. (2019). Role of recycling fine materials as filler for improving performance of concrete - a review. Australian Journal of Civil Engineering, 17(2), 85–95. doi:10.1080/14488353.2019.1626692.
[48] Bheel, N., Memon, A. S., Khaskheli, I. A., Talpur, N. M., Talpur, S. M., & Khanzada, M. A. (2020). Effect of Sugarcane Bagasse Ash and Lime Stone Fines on the Mechanical Properties of Concrete. Engineering, Technology & Applied Science Research, 10(2), 5534–5537. doi:10.48084/etasr.3434.
[49] Yerramala, A., & Ramachandrudu, C. (2012). Properties of concrete with coconut shells as aggregate replacement. International Journal of Engineering Inventions, 1(6), 21-31.
[50] Prakash, R., Thenmozhi, R., Raman, S. N., Subramanian, C., & Divyah, N. (2021). An investigation of key mechanical and durability properties of coconut shell concrete with partial replacement of fly ash. Structural Concrete, 22(S1), E985–E996. doi:10.1002/suco.201900162.
[51] Kumar, V. R. P., Gunasekaran, K., & Shyamala, T. (2019). Characterization study on coconut shell concrete with partial replacement of cement by GGBS. Journal of Building Engineering, 26. doi:10.1016/j.jobe.2019.100830.
[52] BS 1881: Part 122. (1983). Testing concrete Part 122, Methods for determination of water absorption. British Standard Institute, London, United Kingdom.
[53] Tomar, R., Kishore, K., Singh Parihar, H., & Gupta, N. (2021). A comprehensive study of waste coconut shell aggregate as raw material in concrete. Materials Today: Proceedings, 44, 437–443. doi:10.1016/j.matpr.2020.09.754.
[54] Mo, K. H., Mohd Anor, F. A., Alengaram, U. J., Jumaat, M. Z., & Rao, K. J. (2018). Properties of metakaolin-blended oil palm shell lightweight concrete. European Journal of Environmental and Civil Engineering, 22(7), 852–868. doi:10.1080/19648189.2016.1229222.
[55] Subaşi, S. (2009). The effects of using fly ash on high strength lightweight concrete produced with expanded clay aggregate. Scientific Research and Essays, 4(4), 275–288.
[56] Prakash, R., Thenmozhi, R., & Raman, S. N. (2019). Mechanical characterisation and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate. International Journal of Environment and Sustainable Development, 18(2), 131–148. doi:10.1504/IJESD.2019.099491.
[57] Chakradhara Rao, M. (2021). Influence of brick dust, stone dust, and recycled fine aggregate on properties of natural and recycled aggregate concrete. Structural Concrete, 22(S1), E105–E120. doi:10.1002/suco.202000103.
[58] Ibrahim, R. K., Ramyar, K., Hamid, R., & Taha, M. R. (2011). The effect of high temperature on mortars containing silica fume. Journal of Applied Sciences, 11(14), 2666–2669. doi:10.3923/jas.2011.2666.2669.
[59] Ibrahim, M. J. Garba, A. S. J. Smith, B. Muhammad, & S. M. Ishaq. (2020). Behaviour of Coconut Shell Aggregate (CSA) Concrete at Elevated Temperature. IJSRD - International Journal for Scientific Research & Development, 8(4), 2321–0613.
[60] Shetty, M. S. (2000). Concrete Technology Theory and Practice (4th Ed.). S.Chand & Company Pvt Ltd. New Delhi, India.
[61] Raju, P. S. N., & Dayaratnam, P. (1984). Durability of concrete exposed to dilute sulphuric acid. Building and Environment, 19(2), 75–79. doi:10.1016/0360-1323(84)90032-5.
[62] Wegian, F. M. (2010). Effect of seawater for mixing and curing on structural concrete. IES Journal Part A: Civil and Structural Engineering, 3(4), 235–243. doi:10.1080/19373260.2010.521048.
[63] Ge, Z., Wang, Y., Sun, R., Wu, X., & Guan, Y. (2015). Influence of ground waste clay brick on properties of fresh and hardened concrete. Construction and Building Materials, 98, 128–136. doi:10.1016/j.conbuildmat.2015.08.100.
[64] Joorabchian, S. M. (2010). Durability of concrete exposed to sulfuric acid attack. Master Thesis. Ryerson University, Toronto, Ontario, Canada.
[65] Shi, C., & Stegemann, J. A. (2000). Acid corrosion resistance of different cementing materials. Cement and Concrete Research, 30(5), 803–808. doi:10.1016/S0008-8846(00)00234-9.
[66] Khoury, G. A. (2000). Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, 2(4), 429–447. doi:10.1002/pse.51.
[67] Taylor, H. F. (1997). Cement chemistry. Thomas Telford, London, United Kingdom. doi:10.1680/cc.25929.
[68] Mwilongo, K. P., Machunda, R. L., & Jande, Y. A. C. (2020). Effect of elevated temperature on compressive strength and physical properties of neem seed husk ash concrete. Materials, 13(5), 1198. doi:10.3390/ma13051198.
[69] Xu, Y., Wong, Y. L., Poon, C. S., & Anson, M. (2001). Impact of high temperature on PFA concrete. Cement and Concrete Research, 31(7), 1065–1073. doi:10.1016/S0008-8846(01)00513-0.
[70] Fares, H., Noumowe, A., & Remond, S. (2009). Self-consolidating concrete subjected to high temperature. Mechanical and physicochemical properties. Cement and Concrete Research, 39(12), 1230–1238. doi:10.1016/j.cemconres.2009.08.001.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.