A Computational Approach to a Mathematical Model of Climate Change Using Heat Sources and Diffusion
Vol. 8 No. 7 (2022): July
Research Articles
Downloads
Doi: 10.28991/CEJ-2022-08-07-04
Full Text: PDF
Arif, M. S., Abodayeh, K., & Nawaz, Y. (2022). A Computational Approach to a Mathematical Model of Climate Change Using Heat Sources and Diffusion. Civil Engineering Journal, 8(7), 1358–1368. https://doi.org/10.28991/CEJ-2022-08-07-04
[1] Stroud, K. A., & Booth, D. J. (2009). Essential Mathematics for Science and Technology. Industrial Press, South Norwalk, United States.
[2] Riley, K. F., & Hobson, M. P. (2006). Student Solutions Manual for Mathematical Methods for Physics and Engineering. doi:10.1017/cbo9780511816130.
[3] Yevick, D., & Yevick, H. (2014). Fundamental Math and Physics for Scientists and Engineers. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118979792.
[4] Harshbarger, R. J., & Reynolds, J. J. (2012). Mathematical applications for the management, life, and social sciences. Cengage Learning, Boston, United States.
[5] Yang, X. S. (2009). Introductory mathematics for earth scientists. Dunedin, Edinburg, Scotland.
[6] Bröcker, J., Calderhead, B., Cheraghi, D., Cotter, C., Holm, D. D., Kuna, T., ... & Weller, H. (2017). Mathematics of Planet Earth: A Primer. World Scientific, Singapore. doi:10.1142/q0111.
[7] Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M., Allen, S. K., Boschung, J., ... & Midgley, P. M. (2014). Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. Cambridge University press, Cambridge, United Kingdom.
[8] Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
[9] NOAA. (2018). State of the Climate. Global Climate Report. December 2018. National Centers for Environmental Information. Available online: www.ncdc.noaa.gov/sotc/global/201812 (accessed on March 2022).
[10] Soldatenko, S., Yusupov, R., & Colman, R. (2020). Cybernetic approach to problem of interaction between nature and human sosiety in context of unprecedented climate change. SPIIRAS Proceedings, 19(1), 5–42. doi:10.15622/sp.2020.19.1.1. (In Russian).
[11] Osipov, V., Kuleshov, S., Zaytseva, A., & Aksenov, A. (2021). Approach for the COVID-19 epidemic source localization in Russia based on mathematical modeling. Informatics and Automation, 20(5), 1065–1089. doi:10.15622/20.5.3. (In Russian).
[12] Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., ... & Trisos, C. H. (2021). A framework for complex climate change risk assessment. One Earth, 4(4), 489-501. doi:10.1016/j.oneear.2021.03.005.
[13] Soldatenko, S. A., & Alekseev, G. V. (2020). Managing climate risks associated with socio-economic development of the Russian Arctic. IOP Conference Series: Earth and Environmental Science, 606(1), 12060. doi:10.1088/1755-1315/606/1/012060.
[14] Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. doi:10.1175/BAMS-D-11-00094.1.
[15] Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P. I. E. R. R. E., Gaye, A. T., Gregory, J. M., ... & Zhao, Z. C. (2007). Global climate projections. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom.
[16] Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., ... & Booth, B. B. (2013). Long-term climate change: projections, commitments and irreversibility. Climate change 2013-The physical science basis: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1029-1136, Cambridge University Press, Cambridge, United Kingdom.
[17] Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., ... & Rummukainen, M. (2014). Evaluation of climate models. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 741-866, Cambridge University Press, Cambridge, United Kingdom.
[18] Grose, M. R., Gregory, J., Colman, R., & Andrews, T. (2018). What Climate Sensitivity Index Is Most Useful for Projections? Geophysical Research Letters, 45(3), 1559–1566. doi:10.1002/2017GL075742.
[19] Colman, R., & Soldatenko, S. (2020). Understanding the links between climate feedbacks, variability and change using a two-layer energy balance model. Climate Dynamics, 54(7–8), 3441–3459. doi:10.1007/s00382-020-05189-3.
[20] Kaper, H., & Engler, H. (2013). Mathematics and climate. Society for Industrial and Applied Mathematics, Philadelphia, United States. doi:10.1137/1.9781611972610.
[21] Shen, S. S. P., & Somerville, R. C. J. Climate Mathematics: Theory and Applications (1st Ed.). Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9781108693882.
[22] Soldatenko, S. A. (2017). Weather and climate manipulation as an optimal control for adaptive dynamical systems. Complexity, 2017, 1-12. doi:10.1155/2017/4615072.
[23] Lynch, P. (2008). The origins of computer weather prediction and climate modeling. Journal of Computational Physics, 227(7), 3431–3444. doi:10.1016/j.jcp.2007.02.034.
[24] Harper, K., Uccellini, L. W., Kalnay, E., Carey, K., & Morone, L. (2007). Symposium of the 50th anniversary of operational numerical weather prediction. Bulletin of the American Meteorological Society, 88(5), 639–650. doi:10.1175/BAMS-88-5-639.
[25] Charney, J. G., FjÖrtoft, R., & Neumann, J. Von. (1950). Numerical Integration of the Barotropic Vorticity Equation. Tellus 2(4), 237–254. doi:10.3402/tellusa.v2i4.8607.
[26] Lohmann, G. (2020). Temperatures from energy balance models: The effective heat capacity matters. Earth System Dynamics, 11(4), 1195–1208. doi:10.5194/esd-11-1195-2020.
[27] Lovejoy, S. (2021). The half-order energy balance equation - Part 2: The inhomogeneous HEBE and 2D energy balance models. Earth System Dynamics, 12(2), 489–511. doi:10.5194/esd-12-489-2021.
[28] Chang, S., Wang, J., & Wang, X. (2015). A fitted finite volume method for real option valuation of risks in climate change. Computers and Mathematics with Applications, 70(5), 1198–1219. doi:10.1016/j.camwa.2015.07.003.
[29] Vilar, M. L., Tello, L., Hidalgo, A., & Bedoya, C. (2021). An energy balance model of heterogeneous extensive green roofs. Energy and Buildings, 250, 111265. doi:10.1016/j.enbuild.2021.111265.
[30] Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus, 21(5), 611–619. doi:10.3402/tellusa.v21i5.10109.
[31] Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. A. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128-137. doi:10.28991/esj-2022-06-01-010.
[32] Soldatenko, S., Bogomolov, A., & Ronzhin, A. (2021). Mathematical modelling of climate change and variability in the context of outdoor ergonomics. Mathematics, 9(22), 2920. doi:10.3390/math9222920.
[33] Nawaz, Y., Arif, M. S., & Abodayeh, K. (2022). An explicit-implicit numerical scheme for time fractional boundary layer flows. International Journal for Numerical Methods in Fluids, 94(7), 920–940. doi:10.1002/fld.5078.
[34] Nawaz, Y., Arif, M. S., & Shatanawi, W. (2022). A New Numerical Scheme for Time Fractional Diffusive SEAIR Model with Non-Linear Incidence Rate: An Application to Computational Biology. Fractal and Fractional, 6(2), 78. doi:10.3390/fractalfract6020078.
[2] Riley, K. F., & Hobson, M. P. (2006). Student Solutions Manual for Mathematical Methods for Physics and Engineering. doi:10.1017/cbo9780511816130.
[3] Yevick, D., & Yevick, H. (2014). Fundamental Math and Physics for Scientists and Engineers. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118979792.
[4] Harshbarger, R. J., & Reynolds, J. J. (2012). Mathematical applications for the management, life, and social sciences. Cengage Learning, Boston, United States.
[5] Yang, X. S. (2009). Introductory mathematics for earth scientists. Dunedin, Edinburg, Scotland.
[6] Bröcker, J., Calderhead, B., Cheraghi, D., Cotter, C., Holm, D. D., Kuna, T., ... & Weller, H. (2017). Mathematics of Planet Earth: A Primer. World Scientific, Singapore. doi:10.1142/q0111.
[7] Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M., Allen, S. K., Boschung, J., ... & Midgley, P. M. (2014). Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. Cambridge University press, Cambridge, United Kingdom.
[8] Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
[9] NOAA. (2018). State of the Climate. Global Climate Report. December 2018. National Centers for Environmental Information. Available online: www.ncdc.noaa.gov/sotc/global/201812 (accessed on March 2022).
[10] Soldatenko, S., Yusupov, R., & Colman, R. (2020). Cybernetic approach to problem of interaction between nature and human sosiety in context of unprecedented climate change. SPIIRAS Proceedings, 19(1), 5–42. doi:10.15622/sp.2020.19.1.1. (In Russian).
[11] Osipov, V., Kuleshov, S., Zaytseva, A., & Aksenov, A. (2021). Approach for the COVID-19 epidemic source localization in Russia based on mathematical modeling. Informatics and Automation, 20(5), 1065–1089. doi:10.15622/20.5.3. (In Russian).
[12] Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., ... & Trisos, C. H. (2021). A framework for complex climate change risk assessment. One Earth, 4(4), 489-501. doi:10.1016/j.oneear.2021.03.005.
[13] Soldatenko, S. A., & Alekseev, G. V. (2020). Managing climate risks associated with socio-economic development of the Russian Arctic. IOP Conference Series: Earth and Environmental Science, 606(1), 12060. doi:10.1088/1755-1315/606/1/012060.
[14] Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. doi:10.1175/BAMS-D-11-00094.1.
[15] Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P. I. E. R. R. E., Gaye, A. T., Gregory, J. M., ... & Zhao, Z. C. (2007). Global climate projections. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom.
[16] Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., ... & Booth, B. B. (2013). Long-term climate change: projections, commitments and irreversibility. Climate change 2013-The physical science basis: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1029-1136, Cambridge University Press, Cambridge, United Kingdom.
[17] Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., ... & Rummukainen, M. (2014). Evaluation of climate models. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 741-866, Cambridge University Press, Cambridge, United Kingdom.
[18] Grose, M. R., Gregory, J., Colman, R., & Andrews, T. (2018). What Climate Sensitivity Index Is Most Useful for Projections? Geophysical Research Letters, 45(3), 1559–1566. doi:10.1002/2017GL075742.
[19] Colman, R., & Soldatenko, S. (2020). Understanding the links between climate feedbacks, variability and change using a two-layer energy balance model. Climate Dynamics, 54(7–8), 3441–3459. doi:10.1007/s00382-020-05189-3.
[20] Kaper, H., & Engler, H. (2013). Mathematics and climate. Society for Industrial and Applied Mathematics, Philadelphia, United States. doi:10.1137/1.9781611972610.
[21] Shen, S. S. P., & Somerville, R. C. J. Climate Mathematics: Theory and Applications (1st Ed.). Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9781108693882.
[22] Soldatenko, S. A. (2017). Weather and climate manipulation as an optimal control for adaptive dynamical systems. Complexity, 2017, 1-12. doi:10.1155/2017/4615072.
[23] Lynch, P. (2008). The origins of computer weather prediction and climate modeling. Journal of Computational Physics, 227(7), 3431–3444. doi:10.1016/j.jcp.2007.02.034.
[24] Harper, K., Uccellini, L. W., Kalnay, E., Carey, K., & Morone, L. (2007). Symposium of the 50th anniversary of operational numerical weather prediction. Bulletin of the American Meteorological Society, 88(5), 639–650. doi:10.1175/BAMS-88-5-639.
[25] Charney, J. G., FjÖrtoft, R., & Neumann, J. Von. (1950). Numerical Integration of the Barotropic Vorticity Equation. Tellus 2(4), 237–254. doi:10.3402/tellusa.v2i4.8607.
[26] Lohmann, G. (2020). Temperatures from energy balance models: The effective heat capacity matters. Earth System Dynamics, 11(4), 1195–1208. doi:10.5194/esd-11-1195-2020.
[27] Lovejoy, S. (2021). The half-order energy balance equation - Part 2: The inhomogeneous HEBE and 2D energy balance models. Earth System Dynamics, 12(2), 489–511. doi:10.5194/esd-12-489-2021.
[28] Chang, S., Wang, J., & Wang, X. (2015). A fitted finite volume method for real option valuation of risks in climate change. Computers and Mathematics with Applications, 70(5), 1198–1219. doi:10.1016/j.camwa.2015.07.003.
[29] Vilar, M. L., Tello, L., Hidalgo, A., & Bedoya, C. (2021). An energy balance model of heterogeneous extensive green roofs. Energy and Buildings, 250, 111265. doi:10.1016/j.enbuild.2021.111265.
[30] Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus, 21(5), 611–619. doi:10.3402/tellusa.v21i5.10109.
[31] Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. A. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128-137. doi:10.28991/esj-2022-06-01-010.
[32] Soldatenko, S., Bogomolov, A., & Ronzhin, A. (2021). Mathematical modelling of climate change and variability in the context of outdoor ergonomics. Mathematics, 9(22), 2920. doi:10.3390/math9222920.
[33] Nawaz, Y., Arif, M. S., & Abodayeh, K. (2022). An explicit-implicit numerical scheme for time fractional boundary layer flows. International Journal for Numerical Methods in Fluids, 94(7), 920–940. doi:10.1002/fld.5078.
[34] Nawaz, Y., Arif, M. S., & Shatanawi, W. (2022). A New Numerical Scheme for Time Fractional Diffusive SEAIR Model with Non-Linear Incidence Rate: An Application to Computational Biology. Fractal and Fractional, 6(2), 78. doi:10.3390/fractalfract6020078.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
