Torsional Behavior of Steel-Concrete-Steel Sandwich Beams with Welded Stirrups as Shear Connectors

Samoel M. Saleh, Fareed H. Majeed, Osamah Al-Salih, Haleem K. Hussain

Abstract


The structural performance of a steel-concrete-steel sandwich beam (SCSSB) with welded stirrups to the steel skin plates as shear connections exposed to a pure torsion load was studied in this paper. Eight SCSSB specimens were fabricated and tested under pure torsion. The effects of the compressive strength of the concrete core, 26 and 35 MPa, the thickness of the top and bottom steel skin plates, 2 and 4 mm, and the degree of shear interaction, which represents the number of beam stirrups, between the steel skin plates and the concrete core are 75, 100, and 125%. The experiment beams revealed a similar mode of failure for all SCSSB specimens regarding all considered variables, which started with inclined cracks along the specimens’ side faces and ended with local separation between one of the steel skin plates (top or bottom) and the concrete core. In addition, the experiment results showed an increase in the torsional strength with the increase in the shear connection ratio and the thickness of the steel skin plate, as well as with the increase in the strength of the concrete core. However, it was observed that the torsional ductility of the tested beams is proportional directly to the steel skin plate thickness and degree of interaction and inversely with the concrete compressive strength. The results showed that the use of steel skin plates with welded stirrups as a shear connection could reduce the negative effect of increasing the compressive strength of the concrete core on the torsional ductility of SCSSB.

 

Doi: 10.28991/CEJ-2023-09-01-016

Full Text: PDF


Keywords


Sandwich Beam; Shear Connection; Torsional Strength; Torsional Ductility; Pure Torsion.

References


Mhalhal, J. M., Alawsi, M. A., Al-Gasham, T. S., & Abid, S. R. (2022). Impact the shear connector properties on the behavior of steel–concrete-steel sandwich beams. Materials Today: Proceedings, 56, 2043–2047. doi:10.1016/j.matpr.2021.11.379.

Yousefi, M., & Hashem Khatibi, S. (2021). Experimental and numerical study of the flexural behavior of steel–concrete-steel sandwich beams with corrugated-strip shear connectors. Engineering Structures, 242, 112559. doi:10.1016/j.engstruct.2021.112559.

Alzahawy, Z. H., & AL-Hadithy, L. K. (2019). Monotonic and Fatigue Performance of Double-skin Push-out and Tensile Segments of Divers Shear Connectors – Review. Al-Nahrain Journal for Engineering Sciences, 22(3), 213–221. doi:10.29194/njes.22030213.

Chakrawarthi, V., Raj Jesuarulraj, L., Avudaiappan, S., Rajendren, D., Amran, M., Guindos, P., Roy, K., Fediuk, R., & Vatin, N. I. (2022). Effect of Design Parameters on the Flexural Strength of Reinforced Concrete Sandwich Beams. Crystals, 12(8), 1021. doi:10.3390/cryst12081021.

Leng, Y. B., & Song, X. B. (2016). Experimental study on shear performance of steel-concrete-steel sandwich beams. Journal of Constructional Steel Research, 120, 52–61. doi:10.1016/j.jcsr.2015.12.017.

Wang, Y., Sah, T. P., Lu, J., & Zhai, X. (2021). Behavior of steel-concrete-steel sandwich beams with blot connectors under off-center impact load. Journal of Constructional Steel Research, 186, 106889. doi:10.1016/j.jcsr.2021.106889.

Zhang, W., Huang, Z., Fu, Z., Qian, X., Zhou, Y., & Sui, L. (2020). Shear resistance behavior of partially composite Steel-Concrete-Steel sandwich beams considering bond-slip effect. Engineering Structures, 210, 110394. doi:10.1016/j.engstruct.2020.110394.

Yan, J., Guan, H., & Wang, T. (2022). Study on flexural behavior of steel-concrete-steel sandwich composite beams with enhanced C-channels. Jianzhu Jiegou Xuebao/Journal of Building Structures, 43(5), 122–129. doi:10.14006/j.jzjgxb.2020.0246.

Yan, J.-B., Liew, J. Y. R., Zhang, M.-H., & Huang, Z. (2013). Finite element analysis on steel-concrete-steel sandwich composite beams with J-hook shear connectors. The 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM 13), 8-12 September, 2013, Jeju, South Korea.

Wang, Y., Lu, J., Liu, S., Zhai, X., Zhi, X., & Yan, J. B. (2021). Behaviour of a novel stiffener-enhanced steel–concrete–steel sandwich beam subjected to impact loading. Thin-Walled Structures, 165, 107989. doi:10.1016/j.tws.2021.107989.

Karimipour, A., Ghalehnovi, M., Golmohammadi, M., & de Brito, J. (2021). Experimental investigation on the shear behaviour of stud-bolt connectors of steel-concrete-steel fibre-reinforced recycled aggregates sandwich panels. Materials, 14(18), 5185. doi:10.3390/ma14185185.

Ilango, S., & Anandavalli, N. (2020). Behavior of Steel–Concrete–Sandwiched Beam with Steel Fiber Reinforced Concrete Core and X-Form Shear Connectors. Journal of the Institution of Engineers (India): Series A, 102(1), 91–102. doi:10.1007/s40030-020-00492-y.

Liew, J. Y. R., & Sohel, K. M. A. (2009). Lightweight steel-concrete-steel sandwich system with J-hook connectors. Engineering Structures, 31(5), 1166–1178. doi:10.1016/j.engstruct.2009.01.013.

Yan, J. B., Liew, J. Y. R., Zhang, M. H., & Sohel, K. M. A. (2015). Experimental and analytical study on ultimate strength behavior of steel–concrete–steel sandwich composite beam structures. Materials and Structures/Materiaux et Constructions, 48(5), 1523–1544. doi:10.1617/s11527-014-0252-4.

Yan, J.-B., Liew, J. Y. R., & Zhang, M.-H. (2015). Shear-tension interaction strength of j-hook connectors in steel-concrete-steel sandwich structure. 11(1), 73–94. doi:10.18057/ijasc.2015.11.1.5.

Yan, J. B., Guan, H., & Wang, T. (2020). Steel-UHPC-steel sandwich composite beams with novel enhanced C-channel connectors: Tests and analysis. Journal of Constructional Steel Research, 170, 106077. doi:10.1016/j.jcsr.2020.106077.

Sohel, K. M. A., Richard Liew, J. Y., Yan, J. B., Zhang, M. H., & Chia, K. S. (2012). Behavior of Steel-Concrete-Steel sandwich structures with lightweight cement composite and novel shear connectors. Composite Structures, 94(12), 3500–3509. doi:10.1016/j.compstruct.2012.05.023.

Alawsi, M. A., Mhalhal, J. M., Al-Gasham, T. S., & Abid, S. R. (2022). The behavior of steel-concrete-steel sandwich beams with different depths effect. Materials Today: Proceedings, 56, 2145–2150. doi:10.1016/j.matpr.2021.11.463.

Leekitwattana, M., Boyd, S. W., & Shenoi, R. A. (2010). An alternative design of steel-concrete-steel sandwich beam. 9th International Conference on Sandwich Structures (ICSS-9), 13-15 June, 2010, Pasadena, United States.

ASTM C 150/C150M-18. (2019). Standard Specification for Portland cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-18.

ASTM C33/C33M-18. (2018). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520?C0033_C0033M-18.

ASTM C143/143M-20. (2020). Standard Test method for slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-20.

ASTM C873/C873M-15. (2016). Standard Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds. ASTM International, Pennsylvania, United States. doi:10.1520/C0873_C0873M-15.

ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.

ASTM A615/A615M-18. (2018). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615-18.

ASTM A370-18. (2019). Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM International, Pennsylvania, United States. doi:10.1520/A0370-18.

Abdul Razzaq, H., & Jasim, N. (2019). Structural Behavior of Steel-Concrete-Steel Sandwich Structure with New Type of Shear Connectors. Kufa Journal of Engineering, 10(3), 33–52. doi:10.30572/2018/kje/100303.

Joh, C., Kwahk, I., Lee, J., Yang, I. H., & Kim, B. S. (2019). Torsional behavior of high-strength concrete beams with minimum reinforcement ratio. Advances in Civil Engineering, 2019, 1432697. doi:10.1155/2019/1432697.

Xin, Z., Jianyang, X., Rui, R., & Linlin, M. (2021). Test on pure torsion behavior of channel steel reinforced concrete beams. Journal of Building Engineering, 44, 102967. doi:10.1016/j.jobe.2021.102967.

Hussain, H. K., Zewair, M. S., & Ahmed, M. A. (2022). High Strength Concrete Beams Reinforced with Hooked Steel Fibers under Pure Torsion. Civil Engineering Journal (Iran), 8(1), 92–104. doi:10.28991/CEJ-2022-08-01-07.

Teixeira, M. M., & Bernardo, L. F. A. (2018). Ductility of RC beams under torsion. Engineering Structures, 168, 759–769. doi:10.1016/j.engstruct.2018.05.021.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Samoel Mahdi Saleh, Fareed Hameed Majeed, Osamah Al-salih, Haleem K. Hussain

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message