Torsional Behavior of Steel-Concrete-Steel Sandwich Beams with Welded Stirrups as Shear Connectors
Downloads
Doi: 10.28991/CEJ-2023-09-01-016
Full Text: PDF
[2] Yousefi, M., & Hashem Khatibi, S. (2021). Experimental and numerical study of the flexural behavior of steel–concrete-steel sandwich beams with corrugated-strip shear connectors. Engineering Structures, 242, 112559. doi:10.1016/j.engstruct.2021.112559.
[3] Alzahawy, Z. H., & AL-Hadithy, L. K. (2019). Monotonic and Fatigue Performance of Double-skin Push-out and Tensile Segments of Divers Shear Connectors – Review. Al-Nahrain Journal for Engineering Sciences, 22(3), 213–221. doi:10.29194/njes.22030213.
[4] Chakrawarthi, V., Raj Jesuarulraj, L., Avudaiappan, S., Rajendren, D., Amran, M., Guindos, P., Roy, K., Fediuk, R., & Vatin, N. I. (2022). Effect of Design Parameters on the Flexural Strength of Reinforced Concrete Sandwich Beams. Crystals, 12(8), 1021. doi:10.3390/cryst12081021.
[5] Leng, Y. B., & Song, X. B. (2016). Experimental study on shear performance of steel-concrete-steel sandwich beams. Journal of Constructional Steel Research, 120, 52–61. doi:10.1016/j.jcsr.2015.12.017.
[6] Wang, Y., Sah, T. P., Lu, J., & Zhai, X. (2021). Behavior of steel-concrete-steel sandwich beams with blot connectors under off-center impact load. Journal of Constructional Steel Research, 186, 106889. doi:10.1016/j.jcsr.2021.106889.
[7] Zhang, W., Huang, Z., Fu, Z., Qian, X., Zhou, Y., & Sui, L. (2020). Shear resistance behavior of partially composite Steel-Concrete-Steel sandwich beams considering bond-slip effect. Engineering Structures, 210, 110394. doi:10.1016/j.engstruct.2020.110394.
[8] Yan, J., Guan, H., & Wang, T. (2022). Study on flexural behavior of steel-concrete-steel sandwich composite beams with enhanced C-channels. Jianzhu Jiegou Xuebao/Journal of Building Structures, 43(5), 122–129. doi:10.14006/j.jzjgxb.2020.0246.
[9] Yan, J.-B., Liew, J. Y. R., Zhang, M.-H., & Huang, Z. (2013). Finite element analysis on steel-concrete-steel sandwich composite beams with J-hook shear connectors. The 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM 13), 8-12 September, 2013, Jeju, South Korea.
[10] Wang, Y., Lu, J., Liu, S., Zhai, X., Zhi, X., & Yan, J. B. (2021). Behaviour of a novel stiffener-enhanced steel–concrete–steel sandwich beam subjected to impact loading. Thin-Walled Structures, 165, 107989. doi:10.1016/j.tws.2021.107989.
[11] Karimipour, A., Ghalehnovi, M., Golmohammadi, M., & de Brito, J. (2021). Experimental investigation on the shear behaviour of stud-bolt connectors of steel-concrete-steel fibre-reinforced recycled aggregates sandwich panels. Materials, 14(18), 5185. doi:10.3390/ma14185185.
[12] Ilango, S., & Anandavalli, N. (2020). Behavior of Steel–Concrete–Sandwiched Beam with Steel Fiber Reinforced Concrete Core and X-Form Shear Connectors. Journal of the Institution of Engineers (India): Series A, 102(1), 91–102. doi:10.1007/s40030-020-00492-y.
[13] Liew, J. Y. R., & Sohel, K. M. A. (2009). Lightweight steel-concrete-steel sandwich system with J-hook connectors. Engineering Structures, 31(5), 1166–1178. doi:10.1016/j.engstruct.2009.01.013.
[14] Yan, J. B., Liew, J. Y. R., Zhang, M. H., & Sohel, K. M. A. (2015). Experimental and analytical study on ultimate strength behavior of steel–concrete–steel sandwich composite beam structures. Materials and Structures/Materiaux et Constructions, 48(5), 1523–1544. doi:10.1617/s11527-014-0252-4.
[15] Yan, J.-B., Liew, J. Y. R., & Zhang, M.-H. (2015). Shear-tension interaction strength of j-hook connectors in steel-concrete-steel sandwich structure. 11(1), 73–94. doi:10.18057/ijasc.2015.11.1.5.
[16] Yan, J. B., Guan, H., & Wang, T. (2020). Steel-UHPC-steel sandwich composite beams with novel enhanced C-channel connectors: Tests and analysis. Journal of Constructional Steel Research, 170, 106077. doi:10.1016/j.jcsr.2020.106077.
[17] Sohel, K. M. A., Richard Liew, J. Y., Yan, J. B., Zhang, M. H., & Chia, K. S. (2012). Behavior of Steel-Concrete-Steel sandwich structures with lightweight cement composite and novel shear connectors. Composite Structures, 94(12), 3500–3509. doi:10.1016/j.compstruct.2012.05.023.
[18] Alawsi, M. A., Mhalhal, J. M., Al-Gasham, T. S., & Abid, S. R. (2022). The behavior of steel-concrete-steel sandwich beams with different depths effect. Materials Today: Proceedings, 56, 2145–2150. doi:10.1016/j.matpr.2021.11.463.
[19] Leekitwattana, M., Boyd, S. W., & Shenoi, R. A. (2010). An alternative design of steel-concrete-steel sandwich beam. 9th International Conference on Sandwich Structures (ICSS-9), 13-15 June, 2010, Pasadena, United States.
[20] ASTM C 150/C150M-18. (2019). Standard Specification for Portland cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-18.
[21] ASTM C33/C33M-18. (2018). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520?C0033_C0033M-18.
[22] ASTM C143/143M-20. (2020). Standard Test method for slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-20.
[23] ASTM C873/C873M-15. (2016). Standard Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds. ASTM International, Pennsylvania, United States. doi:10.1520/C0873_C0873M-15.
[24] ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
[25] ASTM A615/A615M-18. (2018). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615-18.
[26] ASTM A370-18. (2019). Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM International, Pennsylvania, United States. doi:10.1520/A0370-18.
[27] Abdul Razzaq, H., & Jasim, N. (2019). Structural Behavior of Steel-Concrete-Steel Sandwich Structure with New Type of Shear Connectors. Kufa Journal of Engineering, 10(3), 33–52. doi:10.30572/2018/kje/100303.
[28] Joh, C., Kwahk, I., Lee, J., Yang, I. H., & Kim, B. S. (2019). Torsional behavior of high-strength concrete beams with minimum reinforcement ratio. Advances in Civil Engineering, 2019, 1432697. doi:10.1155/2019/1432697.
[29] Xin, Z., Jianyang, X., Rui, R., & Linlin, M. (2021). Test on pure torsion behavior of channel steel reinforced concrete beams. Journal of Building Engineering, 44, 102967. doi:10.1016/j.jobe.2021.102967.
[30] Hussain, H. K., Zewair, M. S., & Ahmed, M. A. (2022). High Strength Concrete Beams Reinforced with Hooked Steel Fibers under Pure Torsion. Civil Engineering Journal (Iran), 8(1), 92–104. doi:10.28991/CEJ-2022-08-01-07.
[31] Teixeira, M. M., & Bernardo, L. F. A. (2018). Ductility of RC beams under torsion. Engineering Structures, 168, 759–769. doi:10.1016/j.engstruct.2018.05.021.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.