Assessment of Fly Ash-Rice Straw Ash-Laterite Soil Based Geopolymer Mortar Durability
Abstract
Doi: 10.28991/CEJ-2023-09-06-012
Full Text: PDF
Keywords
References
Tumpu, M., & Mabui, D. S. (2022). Effect of hydrated lime (Ca(OH)2) to compressive strength of geopolymer concrete. AIP Conference Proceedings. doi:10.1063/5.0086702.
Mansyur, & Tumpu, M. (2022). Compressive strength of normal concrete using local fine aggregate from Binang River in Bombana district, Indonesia. AIP Conference Proceedings. doi:10.1063/5.0072888.
Dabakuyo, I., Mutuku, R. N., & Onchiri, R. O. (2022). Mechanical Properties of Compressed Earth Block Stabilized with Sugarcane Molasses and Metakaolin-Based Geopolymer. Civil Engineering Journal, 8(4), 780-795. doi:10.28991/CEJ-2022-08-04-012.
Rangan, P. R., Irmawaty, R., Amiruddin, A. A., & Bakri, B. (2020). Strength performance of sodium hydroxide-activated fly ash, rice straw ash, and laterite soil geopolymer mortar. IOP Conference Series: Earth and Environmental Science, 473(1), 012123. doi:10.1088/1755-1315/473/1/012123.
Zhang, P., Zheng, Y., Wang, K., & Zhang, J. (2018). A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Engineering, 152, 79-95. doi:10.1016/j.compositesb.2018.06.031.
Mansyur, & Tumpu, M. (2022). Compressive strength of non-sand concrete with coarse aggregate in Kolaka district as yard pavement. AIP Conference Proceedings. doi:10.1063/5.0072889.
Adnan, A., Parung, H., Tjaronge, M. W., & Djamaluddin, R. (2020). Bond between Steel Reinforcement Bars and Seawater Concrete. Civil Engineering Journal, 6, 61–68. doi:10.28991/cej-2020-sp(emce)-06.
Jindal, B. B. (2019). Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Construction and building materials, 227, 116644. doi:10.1016/j.conbuildmat.2019.08.025.
Tumpu, M., Rangan, P. R., & Mansyur. (2023). Compressive Strength Characteristic of Concrete Using Mountain Sand. IOP Conference Series: Earth and Environmental Science, 1134(1), 012046. doi:10.1088/1755-1315/1134/1/012046.
Benalia, S., Zeghichi, L., & Benghazi, Z. (2022). A Comparative Study of Metakaolin/Slag-Based Geopolymer Mortars Incorporating Natural and Recycled Sands. Civil Engineering Journal, 8(8), 1622-1638. doi:10.28991/CEJ-2022-08-08-07.
Mohammed, A. H., Mubarak, H. M., Hussein, A. K., Abulghafour, T. Z., & Nassani, D. E. (2022). Punching Shear Characterization of Steel Fiber-Reinforced Concrete Flat Slabs. HighTech and Innovation Journal, 3(4), 483-490. doi:10.28991/HIJ-2022-03-04-08.
Morsy, M. S., Alsayed, S. H., Al-Salloum, Y., & Almusallam, T. (2014). Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arabian journal for science and engineering, 39, 4333-4339. doi:10.1007/s13369-014-1093-8.
Deja, J., Uliasz-Bochenczyk, A., & Mokrzycki, E. (2010). CO2 emissions from Polish cement industry. International Journal of Greenhouse Gas Control, 4(4), 583–588. doi:10.1016/j.ijggc.2010.02.002.
Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials, 22(7), 1305–1314. doi:10.1016/j.conbuildmat.2007.10.015.
Phummiphan, I., Horpibulsuk, S., Sukmak, P., Chinkulkijniwat, A., Arulrajah, A., & Shen, S. L. (2016). Stabilization of marginal lateritic soil using high calcium fly ash-based geopolymer. Road Materials and Pavement Design, 17(4), 877–891. doi:10.1080/14680629.2015.1132632.
Park, Y., Abolmaali, A., Kim, Y. H., & Ghahremannejad, M. (2016). Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand. Construction and Building Materials, 118, 43–51. doi:10.1016/j.conbuildmat.2016.05.001.
Rangan, P. R., Irmawaty, R., Tjaronge, M. W., Amiruddin, A. A., Bakri, B., & Tumpu, M. (2021). The effect of curing on compressive strength of geo-polymer mortar made rice straw ash, fly ash, and laterite soil. IOP Conference Series: Earth and Environmental Science, 921(1), 12009. doi:10.1088/1755-1315/921/1/012009.
Maignien, R. (1966). Review of Research on Laterite. Natural Resource Research IV, UNESCO, Paris, France.
Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194–202. doi:10.1016/j.geotexmem.2006.11.002.
Kasthurba, A. K., Santhanam, M., & Mathews, M. S. (2007). Investigation of laterite stones for building purpose from Malabar region, Kerala state, SW India – Part 1: Field studies and profile characterisation. Construction and Building Materials, 21(1), 73–82. doi:10.1016/j.conbuildmat.2005.07.006.
Cizer, Ö., Elsen, J., Feys, D., Heirman, G., Vandewalle, L., Van Gemert, D., ... & De Schutter, G. (2011). Microstructural changes in self-compacting concrete by sulphuric acid attack.13th International Congress on the Chemistry of Cement, 3-8 July, 2013, Madrid, Spain.
Nugraha, P. D. A. (2007). Concrete Technology. Andi Publisher, Yogyakarta, Indonesia. (In Indonesian).
Matalkah, F., Soroushian, P., Balchandra, A., & Peyvandi, A. (2017). Characterization of Alkali-Activated Nonwood Biomass Ash–Based Geopolymer Concrete. Journal of Materials in Civil Engineering, 29(4). doi:10.1061/(asce)mt.1943-5533.0001801.
Detphan, S., & Chindaprasirt, P. (2009). Preparation of fly ash and rice husk ash geopolymer. International Journal of Minerals, Metallurgy and Materials, 16(6), 720–726. doi:10.1016/S1674-4799(10)60019-2.
Roselló, J., Soriano, L., Santamarina, M. P., Akasaki, J. L., Monzó, J., & Payá, J. (2017). Rice straw ash: A potential pozzolanic supplementary material for cementing systems. Industrial Crops and Products, 103, 39–50. doi:10.1016/j.indcrop.2017.03.030.
Kim, Y. Y., Lee, B.-J., Saraswathy, V., & Kwon, S.-J. (2014). Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar. The Scientific World Journal, 2014, 1–10. doi:10.1155/2014/209584.
Al-Akhras, N. M., Al-Akhras, K. M., & Attom, M. F. (2008). Thermal cycling of wheat straw ash concrete. Proceedings of the Institution of Civil Engineers - Construction Materials, 161(1), 9–15. doi:10.1680/coma.2008.161.1.9.
Malasyi, S. (2014). Analysis of the Effect of Straw Ash on the Compressive Strength of Concrete. Teras Jurnal, 4, 2088–0561. (In Indonesian).
ASTM C618-03. (2017). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-03.
Temuujin, J., van Riessen, A., & Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167(1–3), 82–88. doi:10.1016/j.jhazmat.2008.12.121.
Todingrara, Y. T., Tjaronge, M. W., Harianto, T., & Ramli, M. (2017). Performance of laterite soil stabilized with lime and cement as a road foundation. International Journal of Applied Engineering Research, 12(14), 4699-4707.
Persson, B. (2001). A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete. Cement and Concrete Research, 31(2), 193–198. doi:10.1016/S0008-8846(00)00497-X.
Petrillo, A., Cioffi, R., Ferone, C., Colangelo, F., & Borrelli, C. (2016). Eco-sustainable Geopolymer Concrete Blocks Production Process. Agriculture and Agricultural Science Procedia, 8, 408–418. doi:10.1016/j.aaspro.2016.02.037.
SNI 03-6825-2002. (2002.) Indonesian National Standard (SNI) Method of Testing the Compressive Strength of Portland Cement Mortar for Civil Works. National Standardization Council, Jakarta, Indonesia. (In Indonesian).
SNI 1974-2011. (2004). Indonesian National Standard (SNI) Method of Testing the Compressive Strength of Concrete with Cylindrical Specimens. National Standardization Council, Jakarta, Indonesia. (In Indonesian).
Saleh, F., Prayuda, H., Monika, F., & Pratama, M. M. A. (2019). Characteristics Comparison on Mechanical Properties of Mortars using Agriculture Waste as a Cement Replacement Materials. IOP Conference Series: Materials Science and Engineering, 650(1), 12039. doi:10.1088/1757-899X/650/1/012039.
Chen, X., Sutrisno, A., & Struble, L. J. (2018). Effects of calcium on setting mechanism of metakaolin-based geopolymer. Journal of the American Ceramic Society, 101(2), 957–968. doi:10.1111/jace.15249.
DOI: 10.28991/CEJ-2023-09-06-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Parea Rusan Rangan
This work is licensed under a Creative Commons Attribution 4.0 International License.