Creep Behavior of Fiber Reinforced Mortars and Its Effect to Reduce the Differential Shrinkage Stress
Downloads
Doi: 10.28991/CEJ-2023-09-08-014
Full Text: PDF
[2] Wittmann, F. H., & Martinola, G. (2003). Durable Overlay Systems with Engineered Cementitious Composites (ECC). Restoration of Buildings and Monuments, 9(3), 235–264. doi:10.1515/rbm-2003-5760.
[3] Matthews, S. (2007). CONREPNET: Performance-based approach to the remediation of reinforced concrete structures: Achieving durable repaired concrete structures. Journal of Building Appraisal, 3(1), 6–20. doi:10.1057/palgrave.jba.2950063.
[4] Baluch, M. H., Rahman, M. K., & Al-Gadhib, A. H. (2002). Risks of Cracking and Delamination in Patch Repair. Journal of Materials in Civil Engineering, 14(4), 294–302. doi:10.1061/(asce)0899-1561(2002)14:4(294).
[5] Zhou, J., Ye, G., Schlangen, E., & van Breugel, K. (2008). Modelling of stresses and strains in bonded concrete overlays subjected to differential volume changes. Theoretical and Applied Fracture Mechanics, 49(2), 199–205. doi:10.1016/j.tafmec.2007.11.006.
[6] Safitri, E., Kusworo, R. A., & Kristiawan, S. A. (2023). Shrinkage of Micro-Synthetic Fiber-Reinforced Mortar. Infrastructures, 8(1), 7. doi:10.3390/infrastructures8010007.
[7] Shen, D., Liu, C., Luo, Y., Shao, H., Zhou, X., & Bai, S. (2023). Early-age autogenous shrinkage, tensile creep, and restrained cracking behavior of ultra-high-performance concrete incorporating polypropylene fibers. Cement and Concrete Composites, 138, 104948. doi:10.1016/j.cemconcomp.2023.104948.
[8] Yücel, H. E., Dutkiewicz, M., & Yıldızhan, F. (2022). Application of ECC as a Repair/Retrofit and Pavement/Bridge Deck Material for Sustainable Structures: A Review. Materials, 15(24), 8752. doi:10.3390/ma15248752.
[9] Banthia, N., Gupta, R., & Mindess, S. (2006). Development of fiber reinforced concrete repair materials. Canadian Journal of Civil Engineering, 33(2), 126–133. doi:10.1139/l05-093.
[10] Bhutta, A., Farooq, M., & Banthia, N. (2019). Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. Construction and Building Materials, 215, 605–612. doi:10.1016/j.conbuildmat.2019.04.210.
[11] Zanotti, C., Rostagno, G., & Tingley, B. (2018). Further evidence of interfacial adhesive bond strength enhancement through fiber reinforcement in repairs. Construction and Building Materials, 160, 775–785. doi:10.1016/j.conbuildmat.2017.12.140.
[12] Liu, C., Shen, D., Yang, X., Shao, H., Tang, H., & Cai, L. (2023). Early-age properties and shrinkage induced stress of ultra-high-performance concrete under variable temperature and uniaxial restrained condition. Construction and Building Materials, 384, 131382. doi:10.1016/j.conbuildmat.2023.131382.
[13] Pena, P. V. C., Ferreira, R. A. dos R., Santos, A. C. dos, & Oliveira, A. M. de. (2023). Analysis of the compressive creep strain of the concretes with steel fibers: A holistic view in micro and macro scale. Journal of Building Engineering, 71, 106436. doi:10.1016/j.jobe.2023.106436.
[14] Huang, Y., Wang, J., Wei, Q., Shang, H., & Liu, X. (2023). Creep behaviour of ultra-high-performance concrete (UHPC): A review. Journal of Building Engineering, 69, 106187. doi:10.1016/j.jobe.2023.106187.
[15] Acker, P., & Ulm, F. J. (2001). Creep and shrinkage of concrete: Physical origins and practical measurements. Nuclear Engineering and Design, 203(2–3), 143–158. doi:10.1016/S0029-5493(00)00304-6.
[16] Wyrzykowski, M., Scrivener, K., & Lura, P. (2019). Basic creep of cement paste at early age - the role of cement hydration. Cement and Concrete Research, 116, 191–201. doi:10.1016/j.cemconres.2018.11.013.
[17] Suwanmaneechot, P., Aili, A., & Maruyama, I. (2020). Creep behavior of C-S-H under different drying relative humidities: Interpretation of microindentation tests and sorption measurements by multi-scale analysis. Cement and Concrete Research, 132, 106036. doi:10.1016/j.cemconres.2020.106036.
[18] Gan, Y., Romero Rodriguez, C., Zhang, H., Schlangen, E., van Breugel, K., & Š avija, B. (2021). Modeling of microstructural effects on the creep of hardened cement paste using an experimentally informed lattice model. Computer-Aided Civil and Infrastructure Engineering, 36(5), 560–576. doi:10.1111/mice.12659.
[19] Delsaute, B., Torrenti, J. M., & Staquet, S. (2021). Prediction of the basic creep of concrete with high substitution of Portland cement by mineral additions at early age. Structural Concrete, 22(S1), E563–E580. doi:10.1002/suco.201900313.
[20] Kristiawan, S. A., & Nugroho, A. P. (2017). Creep Behaviour of Self-compacting Concrete Incorporating High Volume Fly Ash and its Effect on the Long-term Deflection of Reinforced Concrete Beam. Procedia Engineering, 171, 715–724. doi:10.1016/j.proeng.2017.01.416.
[21] Sheng, Y., Xue, B., Li, H., Qiao, Y., Chen, H., Fang, J., & Xu, A. (2017). Preparation and Performance of a New-Type Alkali-Free Liquid Accelerator for Shotcrete. Advances in Materials Science and Engineering, 2017. doi:10.1155/2017/1264590.
[22] Zhang, Y., & Kong, X. (2014). Influences of superplasticizer, polymer latexes and asphalt emulsions on the pore structure and impermeability of hardened cementitious materials. Construction and Building Materials, 53, 392–402. doi:10.1016/j.conbuildmat.2013.11.104.
[23] Huang, H., Qian, C., Zhao, F., Qu, J., Guo, J., & Danzinger, M. (2016). Improvement on microstructure of concrete by polycarboxylate superplasticizer (PCE) and its influence on durability of concrete. Construction and Building Materials, 110, 293–299. doi:10.1016/j.conbuildmat.2016.02.041.
[24] Cartuxo, F., De Brito, J., Evangelista, L., Jiménez, J. R., & Ledesma, E. F. (2015). Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizer. Construction and Building Materials, 89, 36–47. doi:10.1016/j.conbuildmat.2015.03.119.
[25] Tang, C., Dong, R., Tang, Z., Long, G., Zeng, X., Xie, Y., Xie, Y., Cheng, G., Ma, G., Wang, H., & Wei, Y. (2023). Effects of shrinkage reducing admixture and internal curing agent on shrinkage and creep of high performance concrete. Journal of Building Engineering, 71, 106446. doi:10.1016/j.jobe.2023.106446.
[26] Hong, S. H., Choi, J. S., Yuan, T. F., & Yoon, Y. S. (2023). A review on concrete creep characteristics and its evaluation on high-strength lightweight concrete. Journal of Materials Research and Technology, 22, 230–251. doi:10.1016/j.jmrt.2022.11.125.
[27] Xu, Y., Liu, J., Liu, J., Zhang, Q., & Zhao, H. (2019). Creep at early ages of ultrahigh-strength concrete: Experiment and modelling. Magazine of Concrete Research, 71(16), 847–859. doi:10.1680/jmacr.17.00551.
[28] Liu, Y., Li, Y., Jin, C., Li, H., & Mu, J. (2023). Research on irrecoverable creep of the hardened cement paste under different relative humidity. Journal of Building Engineering, 69(100), 106276. doi:10.1016/j.jobe.2023.106276.
[29] ACI 209.2R-08. (2008). Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete. American Concrete Institute (ACI), Michigan, United States.
[30] Technical Data Sheet. (2023). KraTos Micro 12 mm. Kordsa, İzmit, Turkey. Available online: https://img1.wsimg.com/blobby/go/009e9e51-e2ed-4c41-b640-0c82b1d83403/downloads/KraTos Micro 12 mm Polyamide Fiber (Findotek).pdf?ver=1656229786934 (accessed on June 2023).
[31] RILEM Technical Committees 129. (2000). Part 8: Steady-state creep and creep recovery for service and accident conditions. Materials and Structures, 33(1), 6–13. doi:10.1007/bf02481690.
[32] Baоant, Z. P., & Prasannan, S. (1988). Solidification theory for aging creep. Cement and Concrete Research, 18(6), 923–932. doi:10.1016/0008-8846(88)90028-2.
[33] Baоant, Z. P., Hauggaard, A. B., Baweja, S., & Ulm, F. J. (1997). Microprestress-solidification theory for concrete creep. I: Aging and drying effects. Journal of engineering mechanics, 123(11), 1188-1194. doi:10.1061/(ASCE)0733-9399(1997)123:11(1188).
[34] Chen, Y., Liu, P., Sha, F., Yu, Z., He, S., Xu, W., & Lv, M. (2022). Effects of Type and Content of Fibers, Water-to-Cement Ratio, and Cementitious Materials on the Shrinkage and Creep of Ultra-High Performance Concrete. Polymers, 14(10), 1956. doi:10.3390/polym14101956.
[35] Putri, P. M. (2021). Study of mortar creep with additional polymer materials for concrete repair. Journal of Physics: Conference Series, 1912(1), 012061. doi:10.1088/1742-6596/1912/1/012061.
[36] Kristiawan, S. A. (2012). Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System. International Journal of Concrete Structures and Materials, 6(4), 221–230. doi:10.1007/s40069-012-0023-y.
[37] Gilbert, R. I., & Ranzi, G. (2010). Time-dependent behaviour of concrete structures. CRC Press, London, United Kingdom. doi:10.1201/9781482288711.
[38] Cheng, Z. Q., Zhao, R., Yuan, Y., Li, F., Castel, A., & Xu, T. (2020). Ageing coefficient for early age tensile creep of blended slag and low calcium fly ash geopolymer concrete. Construction and Building Materials, 262, 119855. doi:10.1016/j.conbuildmat.2020.119855.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.