Strength and Chemical Characterization of Ultra High-Performance Geopolymer Concrete: A Coherent Evaluation
Downloads
Doi: 10.28991/CEJ-2023-09-12-020
Full Text: PDF
[2] Qaidi, S. M. A., Tayeh, B. A., Zeyad, A. M., de Azevedo, A. R. G., Ahmed, H. U., & Emad, W. (2022). Recycling of mine tailings for the geopolymers production: A systematic review. Case Studies in Construction Materials, 16, 933. doi:10.1016/j.cscm.2022.e00933.
[3] Li, N., Shi, C., Wang, Q., Zhang, Z., & Ou, Z. (2017). Composition design and performance of alkali-activated cements. Materials and Structures/Materiaux et Constructions, 50(3), 1–11. doi:10.1617/s11527-017-1048-0.
[4] Nuaklong, P., Sata, V., & Chindaprasirt, P. (2018). Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Construction and Building Materials, 161, 365–373. doi:10.1016/j.conbuildmat.2017.11.152.
[5] Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64, 30–41. doi:10.1016/j.cemconres.2014.06.004.
[6] Shaikh, F. U. A. (2016). Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277–287. doi:10.1016/j.ijsbe.2016.05.009.
[7] Rajini, B., & Sashidhar, C. (2019). Prediction mechanical properties of GGBS based on geopolymer concrete by using analytical method. Materials Today: Proceedings, 19, 536–540. doi:10.1016/j.matpr.2019.07.729.
[8] Parashar, A. K., Sharma, P., & Sharma, N. (2022). Effect on the strength of GGBS and fly ash based geopolymer concrete. Materials Today: Proceedings, 62, 4130–4133. doi:10.1016/j.matpr.2022.04.662.
[9] Mejía, J. M., Mejía de Gutiérrez, R., & Puertas, F. (2013). Rice husk ash as a source of silica in alkali-activated fly ash and slag cementitious systems. Construction Materials, 63(311), 361–375. doi:10.3989/mc.2013.04712.
[10] Phoo-Ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., & Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Construction and Building Materials, 91, 1–8. doi:10.1016/j.conbuildmat.2015.05.001.
[11] Smirnova, O. M. (2018). Technology of increase of nanoscale pores volume in protective cement matrix. International Journal of Civil Engineering and Technology, 9(10), 1991–2000.
[12] Shi, C., Qu, B., & Provis, J. L. (2019). Recent progress in low-carbon binders. Cement and Concrete Research, 122, 227–250. doi:10.1016/j.cemconres.2019.05.009.
[13] Ahmed, H. U., Mohammed, A. S., Qaidi, S. M. A., Faraj, R. H., Hamah Sor, N., & Mohammed, A. A. (2023). Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. European Journal of Environmental and Civil Engineering, 27(3), 1383–1428. doi:10.1080/19648189.2022.2083022.
[14] Ahmed, H. U., Mohammed, A. S., Faraj, R. H., Qaidi, S. M. A., & Mohammed, A. A. (2022). Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations. Case Studies in Construction Materials, 16, 1036. doi:10.1016/j.cscm.2022.e01036.
[15] Liu, Y., Shi, C., Zhang, Z., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement and Concrete Composites, 112, 103665. doi:10.1016/j.cemconcomp.2020.103665.
[16] Ambily, P. S., Ravisankar, K., Umarani, C., Dattatreya, J. K., & Iyer, N. R. (2014). Development of ultra-high-performance geopolymer concrete. Magazine of Concrete Research, 66(2), 82–89. doi:10.1680/macr.13.00057.
[17] Mansour, W., & Tayeh, B. A. (2020). Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems. Advances in Civil Engineering, 2020, 1–18. doi:10.1155/2020/2139054.
[18] Bahmani, H., Mostofinejad, D., & Ali Dadvar, S. (2020). Mechanical properties of ultra-high-performance fiber- reinforced concrete containing synthetic and mineral fibers. ACI Materials Journal, 117(3), 155–168. doi:10.14359/51724596.
[19] Bahmani, H., Mostofinejad, D., & Dadvar, S. A. (2020). Effects of Synthetic Fibers and Different Levels of Partial Cement Replacement on Mechanical Properties of UHPFRC. Journal of Materials in Civil Engineering, 32(12), 4020361. doi:10.1061/(asce)mt.1943-5533.0003462.
[20] Bahmani, H., Mostofinejad, D., & Dadvar, S. A. (2022). Fiber Type and Curing Environment Effects on the Mechanical Performance of UHPFRC Containing Zeolite. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(6), 4151–4167. doi:10.1007/s40996-022-00911-z.
[21] Bahmani, H., & Mostofinejad, D. (2022). Microstructure of ultra-high-performance concrete (UHPC) – A review study. Journal of Building Engineering, 50, 104118. doi:10.1016/j.jobe.2022.104118.
[22] Leng, Y., Rui, Y., Zhonghe, S., Dingqiang, F., Jinnan, W., Yonghuan, Y., Qiqing, L., & Xiang, H. (2023). Development of an environmental Ultra-High Performance Concrete (UHPC) incorporating carbonated recycled coarse aggregate. Construction and Building Materials, 362, 129657. doi:10.1016/j.conbuildmat.2022.129657.
[23] Liu, K., Yin, T., Fan, D., Wang, J., & Yu, R. (2022). Multiple effects of particle size distribution modulus (q) and maximum aggregate size (Dmax) on the characteristics of Ultra-High Performance concrete (UHPC): Experiments and modeling. Cement and Concrete Composites, 133, 104709. doi:10.1016/j.cemconcomp.2022.104709.
[24] Qaidi, S. M. A., Sulaiman Atrushi, D., Mohammed, A. S., Unis Ahmed, H., Faraj, R. H., Emad, W., Tayeh, B. A., & Mohammed Najm, H. (2022). Ultra-high-performance geopolymer concrete: A review. Construction and Building Materials, 346, 128495. doi:10.1016/j.conbuildmat.2022.128495.
[25] Sun, M., Yu, R., Jiang, C., Fan, D., & Shui, Z. (2022). Quantitative effect of seawater on the hydration kinetics and microstructure development of Ultra High Performance Concrete (UHPC). Construction and Building Materials, 340, 127733. doi:10.1016/j.conbuildmat.2022.127733.
[26] Samuvel Raj, R., Prince Arulraj, G., Anand, N., Kanagaraj, B., Lubloy, E., & Naser, M. Z. (2023). Nanomaterials in geopolymer composites: A review. Developments in the Built Environment, 13, 100114. doi:10.1016/j.dibe.2022.100114.
[27] Dheyaaldin, M. H., Mosaberpanah, M. A., Shi, J., & alzeebaree, R. (2023). The effects of nanomaterials on the characteristics of aluminosilicate-based geopolymer composites: A critical review. Journal of Building Engineering, 73, 106713. doi:10.1016/j.jobe.2023.106713.
[28] Swathi, B., & Vidjeapriya, R. (2023). Influence of precursor materials and molar ratios on normal, high, and ultra-high performance geopolymer concrete – A state of art review. Construction and Building Materials, 392, 132006. doi:10.1016/j.conbuildmat.2023.132006.
[29] Lao, J. C., Huang, B. T., Fang, Y., Xu, L. Y., Dai, J. G., & Shah, S. P. (2023). Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cement and Concrete Research, 165, 107075. doi:10.1016/j.cemconres.2022.107075.
[30] Liu, Y., Zhang, Z., Shi, C., Zhu, D., Li, N., & Deng, Y. (2020). Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cement and Concrete Composites, 112, 103670. doi:10.1016/j.cemconcomp.2020.103670.
[31] Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, 1245. doi:10.1016/j.cscm.2022.e01245.
[32] Tayeh, B. A., Akeed, M. H., Qaidi, S., & Bakar, B. H. A. (2022). Influence of microsilica and polypropylene fibers on the fresh and mechanical properties of ultra-high performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, 1367. doi:10.1016/j.cscm.2022.e01367.
[33] Tahwia, A. M., Heniegal, A. M., Abdellatief, M., Tayeh, B. A., & Elrahman, M. A. (2022). Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Studies in Construction Materials, 17, 1393. doi:10.1016/j.cscm.2022.e01393.
[34] Unis Ahmed, H., Mahmood, L. J., Muhammad, M. A., Faraj, R. H., Qaidi, S. M. A., Hamah Sor, N., Mohammed, A. S., & Mohammed, A. A. (2022). Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances. Cleaner Materials, 5, 100111. doi:10.1016/j.clema.2022.100111.
[35] Wang, F., Sun, X., Tao, Z., & Pan, Z. (2022). Effect of silica fume on compressive strength of ultra-high-performance concrete made of calcium aluminate cement/fly ash based geopolymer. Journal of Building Engineering, 62, 105398. doi:10.1016/j.jobe.2022.105398.
[36] Kathirvel, P., & Sreekumaran, S. (2021). Sustainable development of ultra-high performance concrete using geopolymer technology. Journal of Building Engineering, 39, 102267. doi:10.1016/j.jobe.2021.102267.
[37] Yoo, D. Y., & Banthia, N. (2016). Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 73, 267–280. doi:10.1016/j.cemconcomp.2016.08.001.
[38] Yoo, D. Y., Kang, S. T., & Yoon, Y. S. (2014). Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Construction and Building Materials, 64, 67–81. doi:10.1016/j.conbuildmat.2014.04.007.
[39] Aydin, S., & Baradan, B. (2013). The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Composites Part B: Engineering, 45(1), 63–69. doi:10.1016/j.compositesb.2012.09.080.
[40] Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. Case Studies in Construction Materials, 17, 1234. doi:10.1016/j.cscm.2022.e01234.
[41] Yoo, D. Y., Lee, J. H., & Yoon, Y. S. (2013). Effect of fiber content on mechanical and fracture properties of ultra-high performance fiber reinforced cementitious composites. Composite Structures, 106, 742–753. doi:10.1016/j.compstruct.2013.07.033.
[42] Guo, X., & Pan, X. (2018). Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Construction and Building Materials, 179, 633–641. doi:10.1016/j.conbuildmat.2018.05.198.
[43] Lao, J. C., Xu, L. Y., Huang, B. T., Dai, J. G., & Shah, S. P. (2022). Strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix design and effect of steel fibers. Composites Communications, 30, 101081. doi:10.1016/j.coco.2022.101081.
[44] Mousavinejad, S. H. G., & Sammak, M. (2022). An assessment of the fracture parameters of ultra-high-performance fiber-reinforced geopolymer concrete (UHPFRGC): The application of work of fracture and size effect methods. Theoretical and Applied Fracture Mechanics, 117, 103157. doi:10.1016/j.tafmec.2021.103157.
[45] Liu, J., Wu, C., Li, J., Liu, Z., Xu, S., Liu, K., Su, Y., Fang, J., & Chen, G. (2021). Projectile impact resistance of fibre-reinforced geopolymer-based ultra-high performance concrete (G-UHPC). Construction and Building Materials, 290, 123189. doi:10.1016/j.conbuildmat.2021.123189.
[46] Mousavinejad, S. H. G., & Sammak, M. (2021). Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete. Structures, 32, 1420–1427. doi:10.1016/j.istruc.2021.03.112.
[47] Tahwia, A. M., Abd Ellatief, M., Heneigel, A. M., & Abd Elrahman, M. (2022). Characteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceramics International, 48(14), 19662–19674. doi:10.1016/j.ceramint.2022.03.103.
[48] Tahwia, A. M., Ellatief, M. A., Bassioni, G., Heniegal, A. M., & Elrahman, M. A. (2023). Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic. Journal of Materials Research and Technology, 23, 5681–5697. doi:10.1016/j.jmrt.2023.02.177.
[49] Liu, J., Wu, C., Liu, Z., Li, J., Xu, S., Liu, K., Su, Y., & Chen, G. (2021). Investigations on the response of ceramic ball aggregated and steel fibre reinforced geopolymer-based ultra-high performance concrete (G-UHPC) to projectile penetration. Composite Structures, 255, 112983. doi:10.1016/j.compstruct.2020.112983.
[50] Mousavinejad, S. H. G., & Sammak, M. (2022). An assessment of the effect of Na2SiO3/NaOH ratio, NaOH solution concentration, and aging on the fracture properties of ultra-high-performance geopolymer concrete: The application of the work of fracture and size effect methods. Structures, 39, 434–443. doi:10.1016/j.istruc.2022.03.045.
[51] Sathonsaowaphak, A., Chindaprasirt, P., & Pimraksa, K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 168(1), 44–50. doi:10.1016/j.jhazmat.2009.01.120.
[52] Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073–1078. doi:10.1016/j.mineng.2009.03.022.
[53] Elyamany, H. E., Abd Elmoaty, A. E. M., & Elshaboury, A. M. (2018). Setting time and 7-day strength of geopolymer mortar with various binders. Construction and Building Materials, 187, 974–983. doi:10.1016/j.conbuildmat.2018.08.025.
[54] Lao, J. C., Xu, L. Y., Huang, B. T., Zhu, J. X., Khan, M., & Dai, J. G. (2023). Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete (SH-UHPGC). Frontiers in Materials, 10. doi:10.3389/fmats.2023.1142237.
[55] Bahmani, H., & Mostofinejad, D. (2023). A review of engineering properties of ultra-high-performance geopolymer concrete. Developments in the Built Environment, 14, 100126. doi:10.1016/j.dibe.2023.100126.
[56] Alharbi, Y. R., Abadel, A. A., Salah, A. A., Mayhoub, O. A., & Kohail, M. (2021). Engineering properties of alkali activated materials reactive powder concrete. Construction and Building Materials, 271, 121550. doi:10.1016/j.conbuildmat.2020.121550.
[57] Ng, C., Alengaram, U. J., Wong, L. S., Mo, K. H., Jumaat, M. Z., & Ramesh, S. (2018). A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Construction and Building Materials, 186, 550–576. doi:10.1016/j.conbuildmat.2018.07.075.
[58] Aydin, S., & Baradan, B. (2013). Engineering properties of reactive powder concrete without portland cement. ACI Materials Journal, 110(6), 619–627. doi:10.14359/51686329.
[59] Mehta, A., & Siddique, R. (2017). Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers. Construction and Building Materials, 141, 325–334. doi:10.1016/j.conbuildmat.2017.03.031.
[60] Wong, L. S., Oweida, A. F. M., Kong, S. Y., Iqbal, D. M., & Regunathan, P. (2020). The surface coating mechanism of polluted concrete by Candida ethanolica induced calcium carbonate mineralization. Construction and Building Materials, 257, 119482. doi:10.1016/j.conbuildmat.2020.119482.
[61] Duan, P., Yan, C., & Zhou, W. (2017). Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cement and Concrete Composites, 78, 108–119. doi:10.1016/j.cemconcomp.2017.01.009.
[62] López, A. H., Calvo, J. L. G., Olmo, J. G., Petit, S., & Alonso, M. C. (2008). Microstructural evolution of calcium aluminate cements hydration with silica fume and fly ash additions by scanning electron microscopy, and mid and near-infrared spectroscopy. Journal of the American Ceramic Society, 91(4), 1258–1265. doi:10.1111/j.1551-2916.2008.02283.x.
[63] Vafaei, M., & Allahverdi, A. (2016). Influence of calcium aluminate cement on geopolymerization of natural pozzolan. Construction and Building Materials, 114, 290–296. doi:10.1016/j.conbuildmat.2016.03.204.
[64] Wong, L. S. (2022). Durability Performance of Geopolymer Concrete: A Review. Polymers, 14(5), 868. doi:10.3390/polym14050868.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.