Strength and Chemical Characterization of Ultra High-Performance Geopolymer Concrete: A Coherent Evaluation

Midhin A. K. Midhin, Leong Sing Wong, Ali Najah Ahmed, Al Mashhadani D. A. Jasim, Suvash C. Paul


The objective of this review article is to analyze published data encompassing compressive strength, tensile strength, elastic modulus, and flexural strength, as well as the utilization of scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) for Ultra High-Performance Geopolymer Concrete (UHP-GC), with the focus of establishing the current research trends regarding its mechanical, microstructural, and chemical characteristics. After a critical evaluation of the published data from the literature findings, it became evident that UHP-GC can attain a remarkably high level of engineering performance. In UHP-GC, the optimum percentage of silica fume as a slag partial replacement to achieve high compression, tensile, and elastic modulus were traced to be 25, 30, and 35%, respectively. The optimum ratio of sodium silicate to sodium hydroxide and sodium hydroxide molarity for UHP-GC were identified to be 3.5 and 16, respectively. All in all, the review provides a thorough understanding of the review gap and distinct functions of different raw materials in decreasing porosity and enhancing the formation of geopolymeric gels that not only bond but also strengthen UHP-GC. UHP-GC stands as an energy-saving material in concrete technology, poised to forge a path towards a sustainable future for the building sector.


Doi: 10.28991/CEJ-2023-09-12-020

Full Text: PDF


Ultra High-Performance Geopolymer Concrete; Mechanical; Microstructural; Chemical; Raw Materials; Energy-Saving.


Ahmed, H. U., Mohammed, A. A., Rafiq, S., Mohammed, A. S., Mosavi, A., Sor, N. H., & Qaidi, S. M. A. (2021). Compressive strength of sustainable geopolymer concrete composites: A state-of-the-art review. Sustainability (Switzerland), 13(24), 13502. doi:10.3390/su132413502.

Qaidi, S. M. A., Tayeh, B. A., Zeyad, A. M., de Azevedo, A. R. G., Ahmed, H. U., & Emad, W. (2022). Recycling of mine tailings for the geopolymers production: A systematic review. Case Studies in Construction Materials, 16, 933. doi:10.1016/j.cscm.2022.e00933.

Li, N., Shi, C., Wang, Q., Zhang, Z., & Ou, Z. (2017). Composition design and performance of alkali-activated cements. Materials and Structures/Materiaux et Constructions, 50(3), 1–11. doi:10.1617/s11527-017-1048-0.

Nuaklong, P., Sata, V., & Chindaprasirt, P. (2018). Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Construction and Building Materials, 161, 365–373. doi:10.1016/j.conbuildmat.2017.11.152.

Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64, 30–41. doi:10.1016/j.cemconres.2014.06.004.

Shaikh, F. U. A. (2016). Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277–287. doi:10.1016/j.ijsbe.2016.05.009.

Rajini, B., & Sashidhar, C. (2019). Prediction mechanical properties of GGBS based on geopolymer concrete by using analytical method. Materials Today: Proceedings, 19, 536–540. doi:10.1016/j.matpr.2019.07.729.

Parashar, A. K., Sharma, P., & Sharma, N. (2022). Effect on the strength of GGBS and fly ash based geopolymer concrete. Materials Today: Proceedings, 62, 4130–4133. doi:10.1016/j.matpr.2022.04.662.

Mejía, J. M., Mejía de Gutiérrez, R., & Puertas, F. (2013). Rice husk ash as a source of silica in alkali-activated fly ash and slag cementitious systems. Construction Materials, 63(311), 361–375. doi:10.3989/mc.2013.04712.

Phoo-Ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., & Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Construction and Building Materials, 91, 1–8. doi:10.1016/j.conbuildmat.2015.05.001.

Smirnova, O. M. (2018). Technology of increase of nanoscale pores volume in protective cement matrix. International Journal of Civil Engineering and Technology, 9(10), 1991–2000.

Shi, C., Qu, B., & Provis, J. L. (2019). Recent progress in low-carbon binders. Cement and Concrete Research, 122, 227–250. doi:10.1016/j.cemconres.2019.05.009.

Ahmed, H. U., Mohammed, A. S., Qaidi, S. M. A., Faraj, R. H., Hamah Sor, N., & Mohammed, A. A. (2023). Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. European Journal of Environmental and Civil Engineering, 27(3), 1383–1428. doi:10.1080/19648189.2022.2083022.

Ahmed, H. U., Mohammed, A. S., Faraj, R. H., Qaidi, S. M. A., & Mohammed, A. A. (2022). Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations. Case Studies in Construction Materials, 16, 1036. doi:10.1016/j.cscm.2022.e01036.

Liu, Y., Shi, C., Zhang, Z., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement and Concrete Composites, 112, 103665. doi:10.1016/j.cemconcomp.2020.103665.

Ambily, P. S., Ravisankar, K., Umarani, C., Dattatreya, J. K., & Iyer, N. R. (2014). Development of ultra-high-performance geopolymer concrete. Magazine of Concrete Research, 66(2), 82–89. doi:10.1680/macr.13.00057.

Mansour, W., & Tayeh, B. A. (2020). Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems. Advances in Civil Engineering, 2020, 1–18. doi:10.1155/2020/2139054.

Bahmani, H., Mostofinejad, D., & Ali Dadvar, S. (2020). Mechanical properties of ultra-high-performance fiber- reinforced concrete containing synthetic and mineral fibers. ACI Materials Journal, 117(3), 155–168. doi:10.14359/51724596.

Bahmani, H., Mostofinejad, D., & Dadvar, S. A. (2020). Effects of Synthetic Fibers and Different Levels of Partial Cement Replacement on Mechanical Properties of UHPFRC. Journal of Materials in Civil Engineering, 32(12), 4020361. doi:10.1061/(asce)mt.1943-5533.0003462.

Bahmani, H., Mostofinejad, D., & Dadvar, S. A. (2022). Fiber Type and Curing Environment Effects on the Mechanical Performance of UHPFRC Containing Zeolite. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(6), 4151–4167. doi:10.1007/s40996-022-00911-z.

Bahmani, H., & Mostofinejad, D. (2022). Microstructure of ultra-high-performance concrete (UHPC) – A review study. Journal of Building Engineering, 50, 104118. doi:10.1016/j.jobe.2022.104118.

Leng, Y., Rui, Y., Zhonghe, S., Dingqiang, F., Jinnan, W., Yonghuan, Y., Qiqing, L., & Xiang, H. (2023). Development of an environmental Ultra-High Performance Concrete (UHPC) incorporating carbonated recycled coarse aggregate. Construction and Building Materials, 362, 129657. doi:10.1016/j.conbuildmat.2022.129657.

Liu, K., Yin, T., Fan, D., Wang, J., & Yu, R. (2022). Multiple effects of particle size distribution modulus (q) and maximum aggregate size (Dmax) on the characteristics of Ultra-High Performance concrete (UHPC): Experiments and modeling. Cement and Concrete Composites, 133, 104709. doi:10.1016/j.cemconcomp.2022.104709.

Qaidi, S. M. A., Sulaiman Atrushi, D., Mohammed, A. S., Unis Ahmed, H., Faraj, R. H., Emad, W., Tayeh, B. A., & Mohammed Najm, H. (2022). Ultra-high-performance geopolymer concrete: A review. Construction and Building Materials, 346, 128495. doi:10.1016/j.conbuildmat.2022.128495.

Sun, M., Yu, R., Jiang, C., Fan, D., & Shui, Z. (2022). Quantitative effect of seawater on the hydration kinetics and microstructure development of Ultra High Performance Concrete (UHPC). Construction and Building Materials, 340, 127733. doi:10.1016/j.conbuildmat.2022.127733.

Samuvel Raj, R., Prince Arulraj, G., Anand, N., Kanagaraj, B., Lubloy, E., & Naser, M. Z. (2023). Nanomaterials in geopolymer composites: A review. Developments in the Built Environment, 13, 100114. doi:10.1016/j.dibe.2022.100114.

Dheyaaldin, M. H., Mosaberpanah, M. A., Shi, J., & alzeebaree, R. (2023). The effects of nanomaterials on the characteristics of aluminosilicate-based geopolymer composites: A critical review. Journal of Building Engineering, 73, 106713. doi:10.1016/j.jobe.2023.106713.

Swathi, B., & Vidjeapriya, R. (2023). Influence of precursor materials and molar ratios on normal, high, and ultra-high performance geopolymer concrete – A state of art review. Construction and Building Materials, 392, 132006. doi:10.1016/j.conbuildmat.2023.132006.

Lao, J. C., Huang, B. T., Fang, Y., Xu, L. Y., Dai, J. G., & Shah, S. P. (2023). Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cement and Concrete Research, 165, 107075. doi:10.1016/j.cemconres.2022.107075.

Liu, Y., Zhang, Z., Shi, C., Zhu, D., Li, N., & Deng, Y. (2020). Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cement and Concrete Composites, 112, 103670. doi:10.1016/j.cemconcomp.2020.103670.

Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, 1245. doi:10.1016/j.cscm.2022.e01245.

Tayeh, B. A., Akeed, M. H., Qaidi, S., & Bakar, B. H. A. (2022). Influence of microsilica and polypropylene fibers on the fresh and mechanical properties of ultra-high performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, 1367. doi:10.1016/j.cscm.2022.e01367.

Tahwia, A. M., Heniegal, A. M., Abdellatief, M., Tayeh, B. A., & Elrahman, M. A. (2022). Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Studies in Construction Materials, 17, 1393. doi:10.1016/j.cscm.2022.e01393.

Unis Ahmed, H., Mahmood, L. J., Muhammad, M. A., Faraj, R. H., Qaidi, S. M. A., Hamah Sor, N., Mohammed, A. S., & Mohammed, A. A. (2022). Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances. Cleaner Materials, 5, 100111. doi:10.1016/j.clema.2022.100111.

Wang, F., Sun, X., Tao, Z., & Pan, Z. (2022). Effect of silica fume on compressive strength of ultra-high-performance concrete made of calcium aluminate cement/fly ash based geopolymer. Journal of Building Engineering, 62, 105398. doi:10.1016/j.jobe.2022.105398.

Kathirvel, P., & Sreekumaran, S. (2021). Sustainable development of ultra-high performance concrete using geopolymer technology. Journal of Building Engineering, 39, 102267. doi:10.1016/j.jobe.2021.102267.

Yoo, D. Y., & Banthia, N. (2016). Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 73, 267–280. doi:10.1016/j.cemconcomp.2016.08.001.

Yoo, D. Y., Kang, S. T., & Yoon, Y. S. (2014). Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Construction and Building Materials, 64, 67–81. doi:10.1016/j.conbuildmat.2014.04.007.

Aydin, S., & Baradan, B. (2013). The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Composites Part B: Engineering, 45(1), 63–69. doi:10.1016/j.compositesb.2012.09.080.

Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. Case Studies in Construction Materials, 17, 1234. doi:10.1016/j.cscm.2022.e01234.

Yoo, D. Y., Lee, J. H., & Yoon, Y. S. (2013). Effect of fiber content on mechanical and fracture properties of ultra-high performance fiber reinforced cementitious composites. Composite Structures, 106, 742–753. doi:10.1016/j.compstruct.2013.07.033.

Guo, X., & Pan, X. (2018). Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Construction and Building Materials, 179, 633–641. doi:10.1016/j.conbuildmat.2018.05.198.

Lao, J. C., Xu, L. Y., Huang, B. T., Dai, J. G., & Shah, S. P. (2022). Strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix design and effect of steel fibers. Composites Communications, 30, 101081. doi:10.1016/j.coco.2022.101081.

Mousavinejad, S. H. G., & Sammak, M. (2022). An assessment of the fracture parameters of ultra-high-performance fiber-reinforced geopolymer concrete (UHPFRGC): The application of work of fracture and size effect methods. Theoretical and Applied Fracture Mechanics, 117, 103157. doi:10.1016/j.tafmec.2021.103157.

Liu, J., Wu, C., Li, J., Liu, Z., Xu, S., Liu, K., Su, Y., Fang, J., & Chen, G. (2021). Projectile impact resistance of fibre-reinforced geopolymer-based ultra-high performance concrete (G-UHPC). Construction and Building Materials, 290, 123189. doi:10.1016/j.conbuildmat.2021.123189.

Mousavinejad, S. H. G., & Sammak, M. (2021). Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete. Structures, 32, 1420–1427. doi:10.1016/j.istruc.2021.03.112.

Tahwia, A. M., Abd Ellatief, M., Heneigel, A. M., & Abd Elrahman, M. (2022). Characteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceramics International, 48(14), 19662–19674. doi:10.1016/j.ceramint.2022.03.103.

Tahwia, A. M., Ellatief, M. A., Bassioni, G., Heniegal, A. M., & Elrahman, M. A. (2023). Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic. Journal of Materials Research and Technology, 23, 5681–5697. doi:10.1016/j.jmrt.2023.02.177.

Liu, J., Wu, C., Liu, Z., Li, J., Xu, S., Liu, K., Su, Y., & Chen, G. (2021). Investigations on the response of ceramic ball aggregated and steel fibre reinforced geopolymer-based ultra-high performance concrete (G-UHPC) to projectile penetration. Composite Structures, 255, 112983. doi:10.1016/j.compstruct.2020.112983.

Mousavinejad, S. H. G., & Sammak, M. (2022). An assessment of the effect of Na2SiO3/NaOH ratio, NaOH solution concentration, and aging on the fracture properties of ultra-high-performance geopolymer concrete: The application of the work of fracture and size effect methods. Structures, 39, 434–443. doi:10.1016/j.istruc.2022.03.045.

Sathonsaowaphak, A., Chindaprasirt, P., & Pimraksa, K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 168(1), 44–50. doi:10.1016/j.jhazmat.2009.01.120.

Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073–1078. doi:10.1016/j.mineng.2009.03.022.

Elyamany, H. E., Abd Elmoaty, A. E. M., & Elshaboury, A. M. (2018). Setting time and 7-day strength of geopolymer mortar with various binders. Construction and Building Materials, 187, 974–983. doi:10.1016/j.conbuildmat.2018.08.025.

Lao, J. C., Xu, L. Y., Huang, B. T., Zhu, J. X., Khan, M., & Dai, J. G. (2023). Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete (SH-UHPGC). Frontiers in Materials, 10. doi:10.3389/fmats.2023.1142237.

Bahmani, H., & Mostofinejad, D. (2023). A review of engineering properties of ultra-high-performance geopolymer concrete. Developments in the Built Environment, 14, 100126. doi:10.1016/j.dibe.2023.100126.

Alharbi, Y. R., Abadel, A. A., Salah, A. A., Mayhoub, O. A., & Kohail, M. (2021). Engineering properties of alkali activated materials reactive powder concrete. Construction and Building Materials, 271, 121550. doi:10.1016/j.conbuildmat.2020.121550.

Ng, C., Alengaram, U. J., Wong, L. S., Mo, K. H., Jumaat, M. Z., & Ramesh, S. (2018). A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Construction and Building Materials, 186, 550–576. doi:10.1016/j.conbuildmat.2018.07.075.

Aydin, S., & Baradan, B. (2013). Engineering properties of reactive powder concrete without portland cement. ACI Materials Journal, 110(6), 619–627. doi:10.14359/51686329.

Mehta, A., & Siddique, R. (2017). Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers. Construction and Building Materials, 141, 325–334. doi:10.1016/j.conbuildmat.2017.03.031.

Wong, L. S., Oweida, A. F. M., Kong, S. Y., Iqbal, D. M., & Regunathan, P. (2020). The surface coating mechanism of polluted concrete by Candida ethanolica induced calcium carbonate mineralization. Construction and Building Materials, 257, 119482. doi:10.1016/j.conbuildmat.2020.119482.

Duan, P., Yan, C., & Zhou, W. (2017). Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cement and Concrete Composites, 78, 108–119. doi:10.1016/j.cemconcomp.2017.01.009.

López, A. H., Calvo, J. L. G., Olmo, J. G., Petit, S., & Alonso, M. C. (2008). Microstructural evolution of calcium aluminate cements hydration with silica fume and fly ash additions by scanning electron microscopy, and mid and near-infrared spectroscopy. Journal of the American Ceramic Society, 91(4), 1258–1265. doi:10.1111/j.1551-2916.2008.02283.x.

Vafaei, M., & Allahverdi, A. (2016). Influence of calcium aluminate cement on geopolymerization of natural pozzolan. Construction and Building Materials, 114, 290–296. doi:10.1016/j.conbuildmat.2016.03.204.

Wong, L. S. (2022). Durability Performance of Geopolymer Concrete: A Review. Polymers, 14(5), 868. doi:10.3390/polym14050868.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-020


  • There are currently no refbacks.

Copyright (c) 2024 Midhin Abdulrahman Khaleel Midhin, Leong Sing Wong, Al Mahfoodh Ali Najah Ahmed, Al Mashhadani Duraid Ali Jasim, Suvash Chandra Paul

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.