Silica Quartz Characteristics from Local Silica Sand on Compressive Strength of Mortar
Abstract
Doi: 10.28991/CEJ-2024-010-08-010
Full Text: PDF
Keywords
References
Aprianti, E. (2017). A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II. Journal of cleaner production, 142, 4178-4194. doi:10.1016/j.jclepro.2015.12.115.
Caroles, L., Tumpu, M., Rangan, P. R., & Mansyur. (2021). Marshall properties of LASBUTAG asphalt mixes with pertalite as a modifier. IOP Conference Series: Earth and Environmental Science, 871(1), 012064. doi:10.1088/1755-1315/871/1/012064.
Rangan, P. R., Tumpu, M., & Mansyur. (2023). Marshall Characteristics of Quicklime and Portland Composite Cement (PCC) as Fillers in Asphalt Concrete Binder Course (AC-BC) Mixture. Annales de Chimie: Science Des Materiaux, 47(1), 51–55. doi:10.18280/acsm.470107.
Pang, X., Qin, J., Sun, L., Zhang, G., & Wang, H. (2021). Long-term strength retrogression of silica-enriched oil well cement: A comprehensive multi-approach analysis. Cement and Concrete Research, 144, 106424. doi:10.1016/j.cemconres.2021.106424.
Salih, A., Rafiq, S., Sihag, P., Ghafor, K., Mahmood, W., & Sarwar, W. (2021). Systematic multiscale models to predict the effect of high-volume fly ash on the maximum compression stress of cement-based mortar at various water/cement ratios and curing times. Measurement, 171, 108819. doi:10.1016/j.measurement.2020.108819.
Della, V. P., Kühn, I., & Hotza, D. (2002). Rice husk ash as an alternate source for active silica production. Materials Letters, 57(4), 818–821. doi:10.1016/S0167-577X(02)00879-0.
Gonçalves, M. R. F., & Bergmann, C. P. (2007). Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure. Construction and Building Materials, 21(12), 2059–2065. doi:10.1016/j.conbuildmat.2006.05.057.
Cotton, F. A. and Walkinson, G. (1989). Inorganic Chemistry. University of Indonesia Press, Central Java Jakarta.
Mauricio, G. R., Juan, H. A., Javier, F. B., Eleazar, S. R., Isauro, R. L., V, M. I. R., ... & Carmen, C. L. (2016). Characterization of waste molding sands, for their possible use as building material. Characterization of Minerals, Metals, and Materials 2016, 615-621. doi:10.1007/978-3-319-48210-1_77.
Sun, H., Mašín, D., Najser, J., Neděla, V., & Navrátilová, E. (2020). Fractal characteristics of pore structure of compacted bentonite studied by ESEM and MIP methods. Acta Geotechnica, 15(6), 1655–1671. doi:10.1007/s11440-019-00857-z.
Parung, H., Tumpu, M., Tjaronge, M. W., Arwin Amiruddin, A., Walenna, M. A., & Mansyur. (2023). Crack Pattern of Lightweight Concrete under Compression and Tensile Test. Annales de Chimie: Science Des Materiaux, 47(1), 35–41. doi:10.18280/acsm.470105.
Li, J., Wang, Y., He, X., Sun, Q., Xiong, M., Chen, Z., ... & Liang, C. (2022). A facile and universal method to purify silica from natural sand. Green Processing and Synthesis, 11(1), 907-914. doi:10.1515/gps-2022-0079.
Xu, P., Zhang, Q., Qian, H., Qu, W., & Li, M. (2021). Microstructure and permeability evolution of remolded loess with different dry densities under saturated seepage. Engineering Geology, 282, 105875. doi:10.1016/j.enggeo.2020.105875.
Alameen, M. B., Elraies, K. A., Almansour, A., & Mohyaldinn, M. (2024). Experimental study of the silica dissolution onto sandstone formation: Influence of PH, salinity, and temperature on dissolution. Geoenergy Science and Engineering, 234, 212632. doi:10.1016/j.geoen.2024.212632.
Walther, H. B. (2012). Quality Requirements of Quartz Sand in the Building Industry. Quartz: Deposits, Mineralogy and Analytics, 53-70. doi:10.1007/978-3-642-22161-3_3.
Cao, J., Fang, Y., Fan, R., Wan, Y., Qian, H., Zhou, Y., & Zhu, W. (2015). Influence of mechanochemical effect on physical properties of boiler bottom slag. Cailiao Kexue Yu Gongyi/Material Science and Technology, 23(4), 111–114.
Pundiene, I., Kligys, M., & Šeputyte-Jucike, J. (2014). Portland cement based lightweight multifunctional matrix with different kind of additives containing SiO2. Key Engineering Materials, 604, 305–308. doi:10.4028/www.scientific.net/KEM.604.305.
Bajare, D., Bumanis, G., & Upeniece, L. (2013). Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete. Procedia Engineering, 57, 149–158. doi:10.1016/j.proeng.2013.04.022.
SNI 7064:2014. (2014). Indonesian National Standars: Composite Portland Cement. National Standardization Agency. Jakarta, Indonesia. (In Indonesian).
ASTM C618-22. (2003). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, Unites States. doi:10.1520/C0618-22.
ASTM C780-20 (2023). Standard Test Method for Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry. ASTM International, Pennsylvania, Unites States doi:10.1520/C0780-20.
SNI 1973:2016. (2016). Density Test Method, Mixed Production Volume and Air Content (Gravimetric) of Concrete. National Standardization Agency. Jakarta, Indonesia. (In Indonesian).
DOI: 10.28991/CEJ-2024-010-08-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Didik Suryamiharja Mabui
This work is licensed under a Creative Commons Attribution 4.0 International License.