Seismic Performance of Infilled Reinforced Concrete Frame with Crumb Rubber Mortar Wall Panel
Downloads
Doi: 10.28991/CEJ-2024-010-02-09
Full Text: PDF
[2] Nadal, M., Rovira, J., Díaz-Ferrero, J., Schuhmacher, M., & Domingo, J. L. (2016). Human exposure to environmental pollutants after a tire landfill fire in Spain: Health risks. Environment International, 97, 37–44. doi:10.1016/j.envint.2016.10.016.
[3] Sidhu, K. S., Keeslar, F. L., & Warner, P. O. (2006). Potential health risks related to tire fire smoke. Toxicology International, 13(1), 1–17.
[4] Rogachuk, B. E., & Okolie, J. A. (2023). Waste tires based biorefinery for biofuels and value-added materials production. Chemical Engineering Journal Advances, 14, 100476. doi:10.1016/j.ceja.2023.100476.
[5] Valentini, F., & Pegoretti, A. (2022). End-of-life options of tyres. A review. Advanced Industrial and Engineering Polymer Research, 5(4), 203–213. doi:10.1016/j.aiepr.2022.08.006.
[6] Khaloo, A. R., Dehestani, M., & Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Management, 28(12), 2472–2482. doi:10.1016/j.wasman.2008.01.015.
[7] Gupta, T., Chaudhary, S., & Sharma, R. K. (2016). Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. Journal of Cleaner Production, 112, 702–711. doi:10.1016/j.jclepro.2015.07.081.
[8] Sofi, A. (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4), 2691–2700. doi:10.1016/j.asej.2017.08.007.
[9] Liu, H., Wang, X., Jiao, Y., & Sha, T. (2016). Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials, 9(3), 172. doi:10.3390/ma9030172.
[10] Chen, H., Li, D., Ma, X., Zhong, Z., & Abd-Elaal, E. S. (2023). Compressive strength prediction of crumb rubber mortar based on mesoscale model. Engineering Failure Analysis, 152, 107485. doi:10.1016/j.engfailanal.2023.107485.
[11] Wongsa, A., Sata, V., Nematollahi, B., Sanjayan, J., & Chindaprasirt, P. (2018). Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. Journal of Cleaner Production, 195, 1069–1080. doi:10.1016/j.jclepro.2018.06.003.
[12] Shahrul, S., Mohammed, B. S., Wahab, M. M. A., & Liew, M. S. (2021). Mechanical properties of crumb rubber mortar containing nano-silica using response surface methodology. Materials, 14(19), 5496. doi:10.3390/ma14195496.
[13] Sukontasukkul, P. (2009). Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Construction and Building Materials, 23(2), 1084–1092. doi:10.1016/j.conbuildmat.2008.05.021.
[14] Al-Fakih, A., Mohammed, B. S., Al-Osta, M. A., & Assaggaf, R. (2022). Evaluation of the mechanical performance and sustainability of rubberized concrete interlocking masonry prism. Journal of Materials Research and Technology, 18, 4385–4402. doi:10.1016/j.jmrt.2022.04.115.
[15] Bewick, B. T., Salim, H., Saucier, A., & Jackson, C. (2010). Crumb rubber-concrete panels under blast loads. Air Force Research Laboratory, Materials and Manufacturing Directorate, 1-14.
[16] Naito, C., States, J., Jackson, C., & Bewick, B. (2014). Assessment of Crumb Rubber Concrete for Flexural Structural Members. Journal of Materials in Civil Engineering, 26(10), 04014075. doi:10.1061/(asce)mt.1943-5533.0000986.
[17] Rigotti, D., & Dorigato, A. (2022). Novel uses of recycled rubber in civil applications. Advanced Industrial and Engineering Polymer Research, 5(4), 214–233. doi:10.1016/j.aiepr.2022.08.005.
[18] Wararuksajja, W., Srechai, J., Leelataviwat, S., Sungkamongkol, T., & Limkatanyu, S. (2021). Seismic design method for preventing column shear failure in reinforced concrete frames with infill walls. Journal of Building Engineering, 44, 102963. doi:10.1016/j.jobe.2021.102963.
[19] Crisafulli, F. J. (1997). Seismic behavior of reinforced concrete structures with masonry infills. PhD Thesis., University of Canterbury Christchurch, Christchurch, New Zealand.
[20] Angel, R. (1994). Behavior of reinforced concrete frames with masonry infills. Ph.D. Thesis, University of Illinois Urbana-Champaign, Champaign–Urbana, USA.
[21] Netrattana, C. (2013). Evaluation of reinforced concrete buildings under earthquakes considering effects of masonry infills. Ph.D. Thesis, Chulalongkorn University, Bangkok, Thailand. doi:10.14457/CU.the.2013.1347.
[22] Khan, N. A., Monti, G., Nuti, C., & Vailati, M. (2021). Effects of infills in the seismic performance of an RC factory building in Pakistan. Buildings, 11(7), 276. doi:10.3390/buildings11070276.
[23] Okail, H., Abdelrahman, A., Abdelkhalik, A., & Metwaly, M. (2016). Experimental and analytical investigation of the lateral load response of confined masonry walls. HBRC Journal, 12(1), 33–46. doi:10.1016/j.hbrcj.2014.09.004.
[24] Mehrabi, A. B., Benson Shing, P., Schuller, M. P., & Noland, J. L. (1996). Experimental Evaluation of Masonry-Infilled RC Frames. Journal of Structural Engineering, 122(3), 228–237. doi:10.1061/(asce)0733-9445(1996)122:3(228).
[25] Mahmud, E., Bonev, Z., & Abdulahad, E. (2019). Nonlinear seismic analysis of masonry infilled RC frame structures. Gradjevinski Materijali i Konstrukcije, 62(1), 17–25. https://doi.org/10.5937/grmk1901017m.
[26] GrubiСić, M., Kalman РipoС, T., GrubiСić, A., & Pervan, B. (2023). Testing of Damaged Single-Bay Reinforced Concrete Frames Strengthened with Masonry Infill Walls. Buildings, 13(4), 1021. doi:10.3390/buildings13041021.
[27] Teguh, M. (2017). Experimental Evaluation of Masonry Infill Walls of RC Frame Buildings Subjected to Cyclic Loads. Procedia Engineering, 171, 191–200. doi:10.1016/j.proeng.2017.01.326.
[28] Ozyurt, M. Z., & Almannaa, W. (2024). Effect of modelling the infill wall as a strut element on the structure behaviour. Journal of Radiation Research and Applied Sciences, 17(1), 100755. doi:10.1016/j.jrras.2023.100755.
[29] Wararuksajja, W., Srechai, J., & Leelataviwat, S. (2020). Seismic design of RC moment-resisting frames with concrete block infill walls considering local infill-frame interactions. Bulletin of Earthquake Engineering, 18(14), 6445–6474. doi:10.1007/s10518-020-00942-9.
[30] Tanjung, J., Ismail, F. A., Maidiawati, Nur, O. F., & Mahlil. (2019). Experimental study for evaluating the seismic performance of RC frame structure with partially infilled by brick masonry. International Journal of GEOMATE, 16(57), 189–194. doi:10.21660/2019.57.8340.
[31] Constantinescu, S. (2021). Study on the behavior of a high reinforced concrete building with different kinds of partitioning masonry walls. IOP Conference Series: Earth and Environmental Science, 664(1), 12050. doi:10.1088/1755-1315/664/1/012050.
[32] ASCE/SEI41-17. (2017). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414859.
[33] FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency (FEMA), Washington, United States.
[34] Crisafulli, F. J., & Carr, A. J. (2007). Proposed macro-model for the analysis of infilled frame structures. Bulletin of the New Zealand Society for Earthquake Engineering, 40(2), 69–77. doi:10.5459/bnzsee.40.2.69-77.
[35] Srechai, J., Leelataviwat, S., Wararuksajja, W., & Limkatanyu, S. (2022). Multi-strut and empirical formula-based macro modeling for masonry infilled RC frames. Engineering Structures, 266, 114559. doi:10.1016/j.engstruct.2022.114559.
[36] Roosta, S., & Liu, Y. (2022). Development of a Macro-Model for concrete masonry infilled frames. Engineering Structures, 257, 114075. doi:10.1016/j.engstruct.2022.114075.
[37] Van, T. C., Lau, T. L., & Mohamed Nazri, F. (2022). Macro-modeling approach incorporating fiber plastic hinge for reinforced concrete frames with masonry infill. Engineering Structures, 251, 113421. doi:10.1016/j.engstruct.2021.113421.
[38] Crisafulli, F. J., Carr, A. J., & Park, R. (2000). Analytical modelling of infilled frame structures - A general review. Bulletin of the New Zealand Society for Earthquake Engineering, 33(1), 30–47. doi:10.5459/bnzsee.33.1.30-47.
[39] Smyrou, E., Blandon, C., Antoniou, S., Pinho, R., & Crisafulli, F. (2011). Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bulletin of Earthquake Engineering, 9(5), 1519–1534. doi:10.1007/s10518-011-9262-6.
[40] Bourahla, N. (2015). Equivalent Static Analysis of Structures Subjected to Seismic Actions. Encyclopedia of Earthquake Engineering, Springer, Berlin, Germany. doi:10.1007/978-3-642-35344-4_169.
[41] DPT 1301/1302-61. (2018). Earthquake Resistant Design code DPT 1301/1302-61. Department of Public Works and Town & Country Planning, Ministry of Interior, Bangkok, Thailand.
[42] ASTM C109/C109M-01. (2017). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-01.
[43] ASTM C192/C192M-19. (2020). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-19.
[44] TMS 402/602-16. (2016). Building Code Requirements for Masonry Structures. The Masonry Society, Longmont, United States.
[45] Falcí£o Moreira, R., Varum, H., & Castro, J. M. (2023). Influence of Masonry Infill Walls on the Seismic Assessment of Non-Seismically Designed RC Framed Structures. Buildings, 13(5). doi:10.3390/buildings13051148.
[46] Los Santos - Ortega, J., Fraile - García, E., & Ferreiro - Cabello, J. (2023). Methodology for the environmental analysis of mortar doped with crumb rubber from end-of-life tires. Construction and Building Materials, 399, 132519. doi:10.1016/j.conbuildmat.2023.132519.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.