Robust Open-Source Solution for Bridge Decrement Estimation for Data with Outliers
Downloads
Doi: 10.28991/CEJ-2022-08-04-02
Full Text: PDF
[2] Lantsoght, E. O. L., van der Veen, C., de Boer, A., & Hordijk, D. A. (2017). State-of-the-art on load testing of concrete bridges. Engineering Structures, 150, 231–241. doi:10.1016/j.engstruct.2017.07.050.
[3] Lantsoght, E. O. L., van der Veen, C., Hordijk, D. A., & de Boer, A. (2017). Development of recommendations for proof load testing of reinforced concrete slab bridges. Engineering Structures, 152, 202–210. doi:10.1016/j.engstruct.2017.09.018.
[4] Owerko, P., & Owerko, T. (2021). Novel Approach to Inspections of As-Built Reinforcement in Incrementally Launched Bridges by Means of Computer Vision-Based Point Cloud Data. IEEE Sensors Journal, 21(10), 11822–11833. doi:10.1109/JSEN.2020.3020132.
[5] Bień, J., & Kuzawa, M. (2020). Dynamic Tests in Bridge Health Monitoring. Studia Geotechnica et Mechanica, 42(4), 291–296. doi:10.2478/sgem-2019-0045.
[6] Hester, D., Brownjohn, J., Bocian, M., & Xu, Y. (2017). Low cost bridge load test: Calculating bridge displacement from acceleration for load assessment calculations. Engineering Structures, 143, 358–374. doi:10.1016/j.engstruct.2017.04.021.
[7] Laura, M., Francesco, C., & Antonio, F. (2020). Static and dynamic testing of highway bridges: A best practice example. Journal of civil structural health monitoring, 10(1), 43-56. doi:10.1007/s13349-019-00368-1.
[8] Owerko, P., & Honkisz, M. (2017). Innovative technique for identification of prestressing tendons layout in post-tensioned bridges using a probe with MEMS accelerometer. Structure and Infrastructure Engineering, 13(7), 869–881. doi:10.1080/15732479.2016.1212905.
[9] Brunetti, M., Ciambella, J., Evangelista, L., Lofrano, E., Paolone, A., & Vittozzi, A. (2017). Experimental results in damping evaluation of a high-speed railway bridge. Procedia Engineering, 199, 3015–3020. doi:10.1016/j.proeng.2017.09.402.
[10] Huang, Q., Wang, Y., Luzi, G., Crosetto, M., Monserrat, O., Jiang, J., Zhao, H., & Ding, Y. (2020). Ground-based radar interferometry for monitoring the dynamic performance of a multitrack steel truss high-speed railway bridge. Remote Sensing, 12(16), 2594. doi:10.3390/RS12162594.
[11] Grimm, D., & Hornung, U. (2015). Leica ATRplus–Leistungssteigerung der automatischen Messung und Verfolgung von Prismen. AVN-allgemeine vermessungs-nachrichten, 8-9. (In German).
[12] Alva, R. E., Pujades, L. G., González-Drigo, R., Luzi, G., Caselles, O., & Pinzón, L. A. (2020). Dynamic monitoring of a mid-rise building by real-aperture radar interferometer: Advantages and limitations. Remote Sensing, 12(6), 1025. doi:10.3390/rs12061025.
[13] Owerko, T., & Kuras, P. (2019). Effective processing of radar data for bridge damage detection. Shock and Vibration, 2019. doi:10.1155/2019/2621092.
[14] Yang, Y. B., Zhang, B., Wang, T., Xu, H., & Wu, Y. (2019). Two-axle test vehicle for bridges: Theory and applications. International Journal of Mechanical Sciences, 152, 51–62. doi:10.1016/j.ijmecsci.2018.12.043.
[15] Nakutis, н., & KaСkonas, P. (2011). Bridge vibration logarithmic decrement estimation at the presence of amplitude beat. Measurement, 44(2), 487-492. doi:10.1016/j.measurement.2010.11.012.
[16] Bień, J., Kuzawa, M., & Kamiński, T. (2015). Validation of numerical models of concrete box bridges based on load test results. Archives of Civil and Mechanical Engineering, 15(4), 1046–1060. doi:10.1016/j.acme.2015.05.007.
[17] Kuras, P., Ortyl, Š., Owerko, T., Salamak, M., & Šaziński, P. (2020). GB-SAR in the Diagnosis of Critical City Infrastructure”A Case Study of a Load Test on the Long Tram Extradosed Bridge. Remote Sensing, 12(20), 3361. doi:10.3390/rs12203361.
[18] Owerko, P., Winkelmann, K., & Górski, J. (2020). Application of probabilistic tools to extend load test design of bridges prior to opening. Structure and Infrastructure Engineering, 16(7), 931–948. doi:10.1080/15732479.2019.1676790.
[19] Owerko, P., & Winkelmann, K. (2020). Improving the procedure of probabilistic load testing design of typical bridges based on structural response similarities. Archives of Civil Engineering, 66(4), 325–342. doi:10.24425/ace.2020.135224.
[20] Sun, C., Zhao, Y., Peng, J., Kang, H., & Zhao, Y. (2018). Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation. Engineering Structures, 172, 938–955. doi:10.1016/j.engstruct.2018.06.088.
[21] Zhang, G., Wu, Y., Zhao, W., & Zhang, J. (2020). Radar-based multipoint displacement measurements of a 1200-m-long suspension bridge. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 71–84. doi:10.1016/j.isprsjprs.2020.06.017.
[22] Owerko, T. (2014). Application of ground-based radar interferometry technique to bridge load testing. Pomiary Automatyka Kontrola, 60(12), 1096-1099.
[23] ISO 4866. (2010). Mechanical vibration and shock - Vibration of fixed structures - Guidelines for the measurement of vibrations and evaluation of their effects on structures. International Organization for Standardization, Geneva, Switzerland.
[24] Rao, S. S. (2017). The finite element method in engineering (5th Edition), Butterworth-Heinemann, Oxford, United Kingdom.
[25] Owerko, P., & Ortyl, L. (2013). GPR identification of prestressing tendons in areas with high density of ordinary reinforcement. International Multidisciplinary Scientific GeoConference: SGEM, 2, 771. doi:10.5593/SGEM2013/BA1.V2/S05.012.
[26] Jones Oliphant, T., Peterson, P., SciPy community, E. (2001). SciPy: Open Source Scientific Tools for Python. Available online: http://www.scipy.org/ (accessed on February 2022).
[27] Owerko, T., Owerko, P., and Tomaszkiewicz, K. (2021). owerko/LDT. Available online: https://github.com/owerko/LDT (accessed on January 2022)
[28] Shin, K., & Hammond, J. (2008). Fundamentals of signal processing for sound and vibration engineers. John Wiley & Sons, New jersey, United States.
[29] Kohut, P., Holak, K., Uhl, T., Krupiński, K., Owerko, T., & KuraŠ›, P. (2012). Structure's condition monitoring based on optical measurements. Key Engineering Materials, 518, 338–349. doi:10.4028/www.scientific.net/KEM.518.338.
[30] Owerko, T. (2013). Variations of Frequency Responses of a Cable-Stayed Bridge and Calculation of the Damping Coefficient of Selected Vibration Modes Based on the Data Recorded with Radar Systems. Geomatics and Environmental Engineering, 7(4), 79. doi:10.7494/geom.2013.7.4.79.
[31] Owerko, T., & Kuras, P. (2019). Effective processing of radar data for bridge damage detection. Shock and Vibration, 2019, 1–13. doi:10.1155/2019/2621092.
[32] Zhang, Y., & Lei, Y. (2021). Data anomaly detection of bridge structures using convolutional neural network based on structural vibration signals. Symmetry, 13(7), 1186. doi:10.3390/sym13071186.
[33] Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., & Inman, D. J. (2021). A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mechanical Systems and Signal Processing, 147, 107077. doi:10.1016/j.ymssp.2020.107077.
[34] Bao, Y., Tang, Z., Li, H., & Zhang, Y. (2019). Computer vision and deep learning–based data anomaly detection method for structural health monitoring. Structural Health Monitoring, 18(2), 401–421. doi:10.1177/1475921718757405.
[35] Arnold, M., Hoyer, M., & Keller, S. (2021). Convolutional neural networks for detecting bridge crossing events with ground-based interferometric radar data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(1), 31–38. doi:10.5194/isprs-annals-V-1-2021-31-2021.
[36] Mao, J., Wang, H., & Spencer, B. F. (2021). Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders. Structural Health Monitoring, 20(4), 1609–1626. doi:10.1177/1475921720924601.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
