Maritime Climate in the Canary Islands and its Implications for the Construction of Coastal Infrastructures

Jesica Rodríguez-Martín, Noelia Cruz-Pérez, Juan C. Santamarta

Abstract


Islands are isolated systems that depend on maritime trade for their subsistence. Efficient, durable and structurally reliable port infrastructures are essential for the economic and social development of islands. However, not all port infrastructures are designed in the same way. They can vary, depending on whether they are built on continental land, built on non-volcanic islands or built on volcanic oceanic islands (such as the Canary Islands, Spain). The latter islands are the subject of this study due to their specific features, construction difficulties and the importance of sound maritime infrastructures. The maritime climate of an area consists of the wave and storm regimes that affect it and, from these, the coastal dynamics and coastal formations of that area can be studied. For this reason, historical data were collated on significant directional wave heights from 1958 to 2015 from several WANA-SIMAR points in the virtual buoy network of State Ports of Spain located near the Canary Islands. These data have been studied to obtain the maximum directional wave heights (Hs) at each point. With this analysis, we have obtained useful summary tables to calculate wave height by a graphic method that transforms the distribution function into a line drawn on probabilistic paper, using reduced variables. This enables adjustments to be made by linear regression and minimum square methods to facilitate planning and design of maritime infrastructures in a reliable way.

 

Doi: 10.28991/CEJ-2022-08-01-02

Full Text: PDF


Keywords


GNSS Network; Swell; Wave Height; Maritime Infrastructures.

References


Maniglio, M., Balomenos, G. P., Padgett, J. E., & Cimellaro, G. P. (2021). Parameterized coastal fragilities and their application to aging port structures subjected to surge and wave. Engineering Structures, 237(January), 112235. doi:10.1016/j.engstruct.2021.112235.

Ciasto, L. M., Li, C., Wettstein, J. J., & Kvamstø, N. G. (2016). North Atlantic storm-track sensitivity to projected sea surface temperature: Local versus remote influences. Journal of Climate, 29(19), 6973–6991. doi:10.1175/JCLI-D-15-0860.1.

Jury, M. R. (2019). Hazardous waves from winter trade winds? Regional Studies in Marine Science, 28, 100590. doi:10.1016/j.rsma.2019.100590.

Yanes Luque, A., & Marzol Jaén, M. V. (2009). Los temporales marinos como episodios de riesgo en Tenerife a través de la prensa (1985-2003). Revista de La Sociedad Geológica de España, 22(1–2), 95–104.

Yanes Luque, A., Rodríguez-Báez, J. A., Máyer Suárez, P., Dorta Antequera, P., López-Díez, A., Díaz-Pacheco, J., & Pérez-Chacón, E. (2021). Marine storms in coastal tourist areas of the Canary Islands. Natural Hazards, 109(1), 1297–1325. doi:10.1007/s11069-021-04879-3.

Helfer, K. C., Nuijens, L., de Roode, S. R., & Siebesma, A. P. (2020). How Wind Shear Affects Trade-wind Cumulus Convection. Journal of Advances in Modeling Earth Systems, 12(12). doi:10.1029/2020MS002183.

VanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ackerman, A. S., Burnet, F., Cheng, A., Couvreux, F., Jiang, H., Khairoutdinov, M., Kogan, Y., Lewellen, D. C., Mechem, D., Nakamura, K., Noda, A., Shipway, B. J., Slawinska, J., Wang, S., & Wyszogrodzki, A. (2011). Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. Journal of Advances in Modeling Earth Systems, 3(2). doi:10.1029/2011MS000056.

Garza, J. A., Chu, P. S., Norton, C. W., & Schroeder, T. A. (2012). Changes of the prevailing trade winds over the islands of Hawaii and the North Pacific. Journal of Geophysical Research Atmospheres, 117(11), 1–18. doi:10.1029/2011JD016888.

Kristensen, T. B., Müller, T., Kandler, K., Benker, N., Hartmann, M., Prospero, J. M., Wiedensohler, A., & Stratmann, F. (2016). Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic. Atmospheric Chemistry and Physics, 16(4), 2675–2688. doi:10.5194/acp-16-2675-2016.

Zheng, C. W., Li, C. Y., & Li, X. (2017). Recent Decadal Trend in the North Atlantic Wind Energy Resources. Advances in Meteorology, 2017. doi:10.1155/2017/7257492.

Seco, A., González, P. J., Ramírez, F., García, R., Prieto, E., Yagüe, C., & Fernández, J. (2009). GPS monitoring of the tropical storm delta along the Canary Islands track, November 28-29, 2005. Pure and Applied Geophysics, 166(8–9), 1519–1531. doi:10.1007/s00024-009-0502-5.

Dorta Antequera, P. (2015). Catálogo de riesgos climáticos en Canarias: amenazas y vulnerabilidad. Geographicalia, 51(51), 133. doi:10.26754/ojs_geoph/geoph.2007511118.

Gulev, S. K., & Grigorieva, V. (2006). Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. Journal of Climate, 19(21), 5667–5685. doi:10.1175/JCLI3936.1.

Dodet, G., Bertin, X., & Taborda, R. (2010). Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modelling, 31(3–4), 120–131. doi:10.1016/j.ocemod.2009.10.010.

Tomás, A., Méndez, F. J., Medina, R., Losada, I. J., & Ingeniería, G. De. (2004). Bases De Datos De Oleaje Y Nivel Del Mar , Calibración Y Análisis : El Cambio Climático En La Dinámica Marina En España. In El Clima entre el Mar y la Montaña (pp. 155–164).

Losada Rodríguez, M. Á. (2009). ROM 1.0-09 Recomendaciones del Diseño y Ejecuci on de las Obras de Abrigo. Parte I. Bases y Factores para el Proyecto. Agentes Clim aticos. Puertos del Estado, 532.

Campos, R. M., & Guedes Soares, C. (2016). Comparison of HIPOCAS and ERA wind and wave reanalyses in the North Atlantic Ocean. Ocean Engineering, 112, 320–334. doi:10.1016/j.oceaneng.2015.12.028.

Pascual, C. V., Incera, F. J. M., Solana, R. M., Landeira, S. R., Braña, P. C., Sampedro, A. T., ... & Maza, F. (2011). Evaluación del potencial de la energía de las olas. Estudio Técnico PER 2011-2020, IDEA, Madrid, Spain.

de Andres, A., Guanche, R., Vidal, C., & Losada, I. J. (2015). Adaptability of a generic wave energy converter to different climate conditions. Renewable Energy, 78, 322–333. doi:10.1016/j.renene.2015.01.020.

Estado, P. ROM 0.3-91. Oleaje. Anejo 1. Clima Marítimo en el Litoral Español. Available online: http://www.puertos.es/es-es/BibliotecaV2/ROM 0.3-91.pdf (accessed on May 2021).

Rodríguez Báez, J. Á., Yanes Luque, A., & Dorta Antequera, P. (2017). Determinación y caracterización de situaciones de temporal marino e inundación costera por rebase del oleaje en San Andrés, NE de Tenerife (1984-2014). Investigaciones Geográficas, 68(68), 95. doi:10.14198/ingeo2017.68.06.

Dodet, G., Bertin, X., & Taborda, R. (2010). Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modelling, 31(3–4), 120–131. doi:10.1016/j.ocemod.2009.10.010.

Bertin, X., Prouteau, E., & Letetrel, C. (2013). A significant increase in wave height in the North Atlantic Ocean over the 20th century. Global and Planetary Change, 106, 77–83. doi:10.1016/j.gloplacha.2013.03.009.

Izaguirre, C., Menéndez, M., Camus, P., Méndez, F. J., Mínguez, R., & Losada, I. J. (2012). Exploring the interannual variability of extreme wave climate in the Northeast Atlantic Ocean. Ocean Modelling, 59–60, 31–40. doi:10.1016/j.ocemod.2012.09.007.

Dobrynin, M., Kleine, T., Düsterhus, A., & Baehr, J. (2019). Skilful Seasonal Prediction of Ocean Surface Waves in the Atlantic Ocean. Geophysical Research Letters, 46(3), 1731–1739. doi:10.1029/2018GL081334.

Sierra, J. P., Martín, C., Mösso, C., Mestres, M., & Jebbad, R. (2016). Wave energy potential along the Atlantic coast of Morocco. Renewable Energy, 96, 20–32. doi:10.1016/j.renene.2016.04.071.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-01-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jesica Rodríguez-Martín, Noelia Cruz-Pérez, Juan C. Santamarta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message