Applications of Nearest Neighbor Search Algorithm Toward Efficient Rubber-Based Solid Waste Management in Concrete
Downloads
Doi: 10.28991/CEJ-2022-08-04-06
Full Text: PDF
[2] Thomas, B. S., & Gupta, R. C. (2016). Properties of high strength concrete containing scrap tire rubber. Journal of Cleaner Production, 113, 86-92. doi:10.1016/j.jclepro.2015.11.019.
[3] Onuaguluchi, O., & Panesar, D. K. (2014). Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. Journal of Cleaner Production, 82, 125–131. doi:10.1016/j.jclepro.2014.06.068.
[4] Yung, W. H., Yung, L. C., & Hua, L. H. (2013). A study of the durability properties of waste tire rubber applied to self-compacting concrete. Construction and Building Materials, 41, 665–672. doi:10.1016/j.conbuildmat.2012.11.019.
[5] Pelisser, F., Zavarise, N., Longo, T. A., & Bernardin, A. M. (2011). Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition. Journal of Cleaner Production, 19(6–7), 757–763. doi:10.1016/j.jclepro.2010.11.014.
[6] Aslani, F. (2016). Mechanical properties of waste tire rubber concrete. Journal of Materials in Civil Engineering, 28(3), 04015152. doi:10.1061/(ASCE)MT.1943-5533.0001429.
[7] Hassanli, R., Youssf, O., & Mills, J. E. (2017). Experimental investigations of reinforced rubberized concrete structural members. Journal of Building Engineering, 10, 149–165. doi:10.1016/j.jobe.2017.03.006.
[8] Habib, A., Yildirim, U., & Eren, O. (2021). Seismic Behavior and Damping Efficiency of Reinforced Rubberized Concrete Jacketing. Arabian Journal for Science and Engineering, 46(5), 4825–4839. doi:10.1007/s13369-020-05191-1.
[9] World Business Council for Sustainable Development (WBCSD). (2010). End-of-Life Tires: A Framework for Effective Management Systems. Available online: http://docs.wbcsd.org/2010/10/AFrameworkForEffectiveManagementSystems.pdf (accessed on February 2022).
[10] Adamczyk, J., Gulba, M., SÄ…siadek, M., Babirecki, W., Ššliwa, M., & Ociepa, M. (2019). Rubber Waste Management. Scientific Papers of Silesian University of Technology. Organization and Management Series, (137), 7–21. doi:10.29119/1641-3466.2019.137.1. (In Polish).
[11] Thomas, B. S., & Gupta, R. C. (2016). A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews, 54, 1323-1333. doi:10.1016/j.rser.2015.10.092.
[12] Najim, K. B., & Hall, M. R. (2010). A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Construction and Building Materials, 24(11), 2043–2051. doi:10.1016/j.conbuildmat.2010.04.056.
[13] Li, D., Mills, J. E., Benn, T., Ma, X., Gravina, R., & Zhuge, Y. (2016). Review of the performance of high-strength rubberized concrete and its potential structural applications. Advances in Civil Engineering Materials, 5(1), 149–166. doi:10.1520/ACEM20150026.
[14] Strukar, K., Kalman Š ipoŠ¡, T., MiliÄević, I., & BuŠ¡ić, R. (2019). Potential use of rubber as aggregate in structural reinforced concrete element – A review. Engineering Structures, 188, 452–468. doi:10.1016/j.engstruct.2019.03.031.
[15] SkripkiЫnas, G., Grinys, A., & MiСkinis, K. (2009). Damping properties of concrete with rubber waste additives. Materials Science (Medоiagotyra), 15(3), 266-272.
[16] Habib, A., Yildirm, U., & Eren, O. (2020). Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber. Construction and Building Materials, 246, 118502. doi:10.1016/j.conbuildmat.2020.118502.
[17] Eldin, N. N., & Senouci, A. B. (1992). Engineering properties of rubberized concrete. Canadian Journal of Civil Engineering, 19(5), 912–923. doi:10.1139/l92-103.
[18] Fattuhi, N. I., & Clark, L. A. (1996). Cement-based materials containing shredded scrap truck tyre rubber. Construction and Building Materials, 10(4), 229–236. doi:10.1016/0950-0618(96)00004-9.
[19] Khatib, Z. K., & Bayomy, F. M. (1999). Rubberized Portland Cement Concrete. Journal of Materials in Civil Engineering, 11(3), 206–213. doi:10.1061/(asce)0899-1561(1999)11:3(206).
[20] Zheng, L., Huo, X. S., & Yuan, Y. (2008). Strength, Modulus of Elasticity, and Brittleness Index of Rubberized Concrete. Journal of Materials in Civil Engineering, 20(11), 692–699. doi:10.1061/(asce)0899-1561(2008)20:11(692).
[21] Güneyisi, E., Gesoǧlu, M., & Özturan, T. (2004). Properties of rubberized concretes containing silica fume. Cement and Concrete Research, 34(12), 2309–2317. doi:10.1016/j.cemconres.2004.04.005.
[22] Elzokra, A., Al Houri, A., Habib, A., Habib, M., & Malkawi, A. B. (2020). Shrinkage behavior of conventional and nonconventional concrete: A review. Civil Engineering Journal (Iran), 6(9), 1839–1851. doi:10.28991/cej-2020-03091586.
[23] Xue, J., & Shinozuka, M. (2013). Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Construction and Building Materials, 42, 196–204. doi:10.1016/j.conbuildmat.2013.01.005.
[24] Qaidi, S. M. A., Dinkha, Y. Z., Haido, J. H., Ali, M. H., & Tayeh, B. A. (2021). Engineering properties of sustainable green concrete incorporating eco-friendly aggregate of crumb rubber: A review. Journal of Cleaner Production, 324, 129251. doi:10.1016/j.jclepro.2021.129251.
[25] Assaggaf, R. A., Ali, M. R., Al-Dulaijan, S. U., & Maslehuddin, M. (2021). Properties of concrete with untreated and treated crumb rubber – A review. Journal of Materials Research and Technology, 11, 1753–1798. doi:10.1016/j.jmrt.2021.02.019.
[26] Nocera, F., Wang, J., Faleschini, F., Demartino, C., & Gardoni, P. (2022). Probabilistic models of concrete compressive strength and elastic modulus with rubber aggregates. Construction and Building Materials, 322, 126145. doi:10.1016/j.conbuildmat.2021.126145.
[27] Marie, I. (2016). Zones of weakness of rubberized concrete behavior using the UPV. Journal of Cleaner Production, 116, 217–222. doi:10.1016/j.jclepro.2015.12.096.
[28] Aslani, F., & Khan, M. (2019). Properties of High-Performance Self-Compacting Rubberized Concrete Exposed to High Temperatures. Journal of Materials in Civil Engineering, 31(5), 04019040. doi:10.1061/(asce)mt.1943-5533.0002672.
[29] Miller, N. M., & Tehrani, F. M. (2017). Mechanical properties of rubberized lightweight aggregate concrete. Construction and Building Materials, 147, 264–271. doi:10.1016/j.conbuildmat.2017.04.155.
[30] Bisht, K., & Ramana, P. V. (2017). Evaluation of mechanical and durability properties of crumb rubber concrete. Construction and building materials, 155, 811-817. doi:10.1016/j.conbuildmat.2017.08.131.
[31] Topçu, I. B., & Saridemir, M. (2008). Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Construction and Building Materials, 22(4), 532–540. doi:10.1016/j.conbuildmat.2006.11.007.
[32] Cheng, M. Y., & Cao, M. T. (2016). Estimating strength of rubberized concrete using evolutionary multivariate adaptive regression splines. Journal of Civil Engineering and Management, 22(5), 711–720. doi:10.3846/13923730.2014.897989.
[33] Jalal, M., Arabali, P., Grasley, Z., & Bullard, J. W. (2020). Application of adaptive neuro-fuzzy inference system for strength prediction of rubberized concrete containing silica fume and zeolite. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(3), 438–451. doi:10.1177/1464420719890370.
[34] Jalal, M., Nassir, N., Jalal, H., & Arabali, P. (2019). On the strength and pulse velocity of rubberized concrete containing silica fume and zeolite: Prediction using multivariable regression models. Construction and Building Materials, 223, 530–543. doi:10.1016/j.conbuildmat.2019.06.233.
[35] Hadzima-Nyarko, M., Nyarko, E. K., Lu, H., & Zhu, S. (2020). Machine learning approaches for estimation of compressive strength of concrete. European Physical Journal Plus, 135(8), 682. doi:10.1140/epjp/s13360-020-00703-2.
[36] Habib, A., & Yıldırım, U. (2021). Prediction of the dynamic properties in rubberized concrete. Computers and Concrete, 27(3), 185–197. doi:10.12989/cac.2021.27.3.185.
[37] David J. Olive. (2010). Multiple Linear and 1D Regression. Southern Illinois University, Carbondale, United States.
[38] Achen, C. H. (1982). Interpreting and using regression (1st Ed.) SAGE Publications, Thousand Oaks, United States. doi:10.4135/9781412984560.
[39] Omohundro, S. M. (1989). Five balltree construction algorithms. Technical Report, International Computer Science Institute, Berkeley, United States.
[40] Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative Searching. Communications of the ACM, 18(9), 509–517. doi:10.1145/361002.361007.
[41] Habib, M., Alzubi, Y., Malkawi, A., & Awwad, M. (2020). Impact of interpolation techniques on the accuracy of large-scale digital elevation model. Open Geosciences, 12(1), 190–202. doi:10.1515/geo-2020-0012.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
