Applications of Nearest Neighbor Search Algorithm Toward Efficient Rubber-Based Solid Waste Management in Concrete

Yazan Alzubi, Hasan Alqawasmeh, Buthainah Al-Kharabsheh, Dana Abed


Indeed, natural processes of discarding rubber waste have many disadvantages for the environment. As a result, multiple researchers suggested addressing this problem by recycling rubber as an aggregate in concrete mixtures. Previously, numerous studies have been undertaken experimentally to investigate the properties of rubberized concrete. Furthermore, investigations were carried out to develop estimating techniques to precisely specify the generated concrete's characteristics, making its use in real-life applications easier. However, there is still a gap in the conducted studies on the performance of the k-nearest neighbor algorithm. Hence, this research explores the accuracy of using the k-nearest neighbor's algorithm in predicting the compressive and tensile strength and the modulus of elasticity of rubberized concrete. It will be done by developing an optimized machine learning model using the aforementioned method and then benchmarking its results to the outcomes of multiple linear regression and artificial neural networks. The study's findings have shown that the k-nearest neighbor's algorithm provides significantly higher accuracy than other methods. This kind of study needs to be discussed in the literature so that people can better deal with rubber waste in concrete.


Doi: 10.28991/CEJ-2022-08-04-06

Full Text: PDF


Rubberized Concrete; Recycled Aggregate; Concrete Properties; Nearest Neighbour; Machine Learning.


Fazli, A., & Rodrigue, D. (2020). Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers. Materials, 13(3). doi:10.3390/ma13030782.

Thomas, B. S., & Gupta, R. C. (2016). Properties of high strength concrete containing scrap tire rubber. Journal of Cleaner Production, 113, 86-92. doi:10.1016/j.jclepro.2015.11.019.

Onuaguluchi, O., & Panesar, D. K. (2014). Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. Journal of Cleaner Production, 82, 125–131. doi:10.1016/j.jclepro.2014.06.068.

Yung, W. H., Yung, L. C., & Hua, L. H. (2013). A study of the durability properties of waste tire rubber applied to self-compacting concrete. Construction and Building Materials, 41, 665–672. doi:10.1016/j.conbuildmat.2012.11.019.

Pelisser, F., Zavarise, N., Longo, T. A., & Bernardin, A. M. (2011). Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition. Journal of Cleaner Production, 19(6–7), 757–763. doi:10.1016/j.jclepro.2010.11.014.

Aslani, F. (2016). Mechanical properties of waste tire rubber concrete. Journal of Materials in Civil Engineering, 28(3), 04015152. doi:10.1061/(ASCE)MT.1943-5533.0001429.

Hassanli, R., Youssf, O., & Mills, J. E. (2017). Experimental investigations of reinforced rubberized concrete structural members. Journal of Building Engineering, 10, 149–165. doi:10.1016/j.jobe.2017.03.006.

Habib, A., Yildirim, U., & Eren, O. (2021). Seismic Behavior and Damping Efficiency of Reinforced Rubberized Concrete Jacketing. Arabian Journal for Science and Engineering, 46(5), 4825–4839. doi:10.1007/s13369-020-05191-1.

World Business Council for Sustainable Development (WBCSD). (2010). End-of-Life Tires: A Framework for Effective Management Systems. Available online: (accessed on February 2022).

Adamczyk, J., Gulba, M., Sąsiadek, M., Babirecki, W., Śliwa, M., & Ociepa, M. (2019). Rubber Waste Management. Scientific Papers of Silesian University of Technology. Organization and Management Series, (137), 7–21. doi:10.29119/1641-3466.2019.137.1. (In Polish).

Thomas, B. S., & Gupta, R. C. (2016). A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews, 54, 1323-1333. doi:10.1016/j.rser.2015.10.092.

Najim, K. B., & Hall, M. R. (2010). A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Construction and Building Materials, 24(11), 2043–2051. doi:10.1016/j.conbuildmat.2010.04.056.

Li, D., Mills, J. E., Benn, T., Ma, X., Gravina, R., & Zhuge, Y. (2016). Review of the performance of high-strength rubberized concrete and its potential structural applications. Advances in Civil Engineering Materials, 5(1), 149–166. doi:10.1520/ACEM20150026.

Strukar, K., Kalman Šipoš, T., Miličević, I., & Bušić, R. (2019). Potential use of rubber as aggregate in structural reinforced concrete element – A review. Engineering Structures, 188, 452–468. doi:10.1016/j.engstruct.2019.03.031.

Skripkiūnas, G., Grinys, A., & Miškinis, K. (2009). Damping properties of concrete with rubber waste additives. Materials Science (Medžiagotyra), 15(3), 266-272.

Habib, A., Yildirm, U., & Eren, O. (2020). Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber. Construction and Building Materials, 246, 118502. doi:10.1016/j.conbuildmat.2020.118502.

Eldin, N. N., & Senouci, A. B. (1992). Engineering properties of rubberized concrete. Canadian Journal of Civil Engineering, 19(5), 912–923. doi:10.1139/l92-103.

Fattuhi, N. I., & Clark, L. A. (1996). Cement-based materials containing shredded scrap truck tyre rubber. Construction and Building Materials, 10(4), 229–236. doi:10.1016/0950-0618(96)00004-9.

Khatib, Z. K., & Bayomy, F. M. (1999). Rubberized Portland Cement Concrete. Journal of Materials in Civil Engineering, 11(3), 206–213. doi:10.1061/(asce)0899-1561(1999)11:3(206).

Zheng, L., Huo, X. S., & Yuan, Y. (2008). Strength, Modulus of Elasticity, and Brittleness Index of Rubberized Concrete. Journal of Materials in Civil Engineering, 20(11), 692–699. doi:10.1061/(asce)0899-1561(2008)20:11(692).

Güneyisi, E., Gesoǧlu, M., & Özturan, T. (2004). Properties of rubberized concretes containing silica fume. Cement and Concrete Research, 34(12), 2309–2317. doi:10.1016/j.cemconres.2004.04.005.

Elzokra, A., Al Houri, A., Habib, A., Habib, M., & Malkawi, A. B. (2020). Shrinkage behavior of conventional and nonconventional concrete: A review. Civil Engineering Journal (Iran), 6(9), 1839–1851. doi:10.28991/cej-2020-03091586.

Xue, J., & Shinozuka, M. (2013). Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Construction and Building Materials, 42, 196–204. doi:10.1016/j.conbuildmat.2013.01.005.

Qaidi, S. M. A., Dinkha, Y. Z., Haido, J. H., Ali, M. H., & Tayeh, B. A. (2021). Engineering properties of sustainable green concrete incorporating eco-friendly aggregate of crumb rubber: A review. Journal of Cleaner Production, 324, 129251. doi:10.1016/j.jclepro.2021.129251.

Assaggaf, R. A., Ali, M. R., Al-Dulaijan, S. U., & Maslehuddin, M. (2021). Properties of concrete with untreated and treated crumb rubber – A review. Journal of Materials Research and Technology, 11, 1753–1798. doi:10.1016/j.jmrt.2021.02.019.

Nocera, F., Wang, J., Faleschini, F., Demartino, C., & Gardoni, P. (2022). Probabilistic models of concrete compressive strength and elastic modulus with rubber aggregates. Construction and Building Materials, 322, 126145. doi:10.1016/j.conbuildmat.2021.126145.

Marie, I. (2016). Zones of weakness of rubberized concrete behavior using the UPV. Journal of Cleaner Production, 116, 217–222. doi:10.1016/j.jclepro.2015.12.096.

Aslani, F., & Khan, M. (2019). Properties of High-Performance Self-Compacting Rubberized Concrete Exposed to High Temperatures. Journal of Materials in Civil Engineering, 31(5), 04019040. doi:10.1061/(asce)mt.1943-5533.0002672.

Miller, N. M., & Tehrani, F. M. (2017). Mechanical properties of rubberized lightweight aggregate concrete. Construction and Building Materials, 147, 264–271. doi:10.1016/j.conbuildmat.2017.04.155.

Bisht, K., & Ramana, P. V. (2017). Evaluation of mechanical and durability properties of crumb rubber concrete. Construction and building materials, 155, 811-817. doi:10.1016/j.conbuildmat.2017.08.131.

Topçu, I. B., & Saridemir, M. (2008). Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Construction and Building Materials, 22(4), 532–540. doi:10.1016/j.conbuildmat.2006.11.007.

Cheng, M. Y., & Cao, M. T. (2016). Estimating strength of rubberized concrete using evolutionary multivariate adaptive regression splines. Journal of Civil Engineering and Management, 22(5), 711–720. doi:10.3846/13923730.2014.897989.

Jalal, M., Arabali, P., Grasley, Z., & Bullard, J. W. (2020). Application of adaptive neuro-fuzzy inference system for strength prediction of rubberized concrete containing silica fume and zeolite. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(3), 438–451. doi:10.1177/1464420719890370.

Jalal, M., Nassir, N., Jalal, H., & Arabali, P. (2019). On the strength and pulse velocity of rubberized concrete containing silica fume and zeolite: Prediction using multivariable regression models. Construction and Building Materials, 223, 530–543. doi:10.1016/j.conbuildmat.2019.06.233.

Hadzima-Nyarko, M., Nyarko, E. K., Lu, H., & Zhu, S. (2020). Machine learning approaches for estimation of compressive strength of concrete. European Physical Journal Plus, 135(8), 682. doi:10.1140/epjp/s13360-020-00703-2.

Habib, A., & Yıldırım, U. (2021). Prediction of the dynamic properties in rubberized concrete. Computers and Concrete, 27(3), 185–197. doi:10.12989/cac.2021.27.3.185.

David J. Olive. (2010). Multiple Linear and 1D Regression. Southern Illinois University, Carbondale, United States.

Achen, C. H. (1982). Interpreting and using regression (1st Ed.) SAGE Publications, Thousand Oaks, United States. doi:10.4135/9781412984560.

Omohundro, S. M. (1989). Five balltree construction algorithms. Technical Report, International Computer Science Institute, Berkeley, United States.

Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative Searching. Communications of the ACM, 18(9), 509–517. doi:10.1145/361002.361007.

Habib, M., Alzubi, Y., Malkawi, A., & Awwad, M. (2020). Impact of interpolation techniques on the accuracy of large-scale digital elevation model. Open Geosciences, 12(1), 190–202. doi:10.1515/geo-2020-0012.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-04-06


  • There are currently no refbacks.

Copyright (c) 2022 Yazan Alzubi, Hasan Alqawasmeh, Buthainah Al-kharabsheh, Dana Abed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.