Numerical Analysis of the Carrying Capacity of a Piled Raft Foundation in Soft Clayey Soils
Downloads
Doi: 10.28991/CEJ-2022-08-04-01
Full Text: PDF
[2] Zeevaert, L. (1957). Compensated friction-pile foundation to reduce the settlement of buildings on the highly compressible volcanic clay of Mexico City. Proc. 4th ICSMFE, London, United Kingdom, 2, 81–86.
[3] Hansbo, S., & Kallstrom, R. Creep piles-A cost effective alternative to conventional friction piles. Vag-Och Vattenbyggaren, 8(7), 29–31.
[4] Randolph, M. F. (1994). Design methods for pile groups and piled rafts. Proc. 13th ICSMGE (January 1994), New Delhi, India, 5, 61-82.
[5] Burland, J. B. (1995). Piles as settlement reducers. Invited Lecture. XIX Convegno Italiano di Geotecnica, 2, 21-34.
[6] Russo, G., & Viggiani, C. (1998). Factors controlling soil-structure interaction for piled rafts. Darmstadt Geotechnics, Darmstadt Univ. of Technology, International Conference on Soil-Structure interaction in Urban Civil Engineering (October 1998), Darmstadt, Germany, 4, 297-322.
[7] Katzenbach, R., Arslan, U., & Moormann, C. (2000). 13. Piled raft foundation projects in Germany. Design Applications of Raft Foundations, 323–391. doi:10.1680/daorf.27657.0013.
[8] Viggiani, C. (2000). ‘Analysis and Design of Piled Foundations. First Arrigo Croce Lecture, Naples, Italy.
[9] Conte, G., Mandolini, A., & Randolph, M. (2003). Centrifuge modelling to investigate the performance of piled rafts. In W. F. Van Impe (Ed.), Dep Foundations on Bored and Auger Piles (Ghent, Belgium ed., pp. 359-366). Millpress.
[10] Reul, O., & Randolph, M. F. (2004). Design Strategies for Piled Rafts Subjected to Nonuniform Vertical Loading. Journal of Geotechnical and Geoenvironmental Engineering, 130(1), 1–13. doi:10.1061/(asce)1090-0241(2004)130:1(1).
[11] Russo, G., Viggiani, C., & De Sanctis, L. (2004). Piles as settlement reducers: a case history. Advances in geotechnical engineering: The Skempton conference: Proceedings of a three day conference on advances in geotechnical engineering, organised by the Institution of Civil Engineers and held at the Royal Geographical Society (29–31 March 2004), London, United Kingdom, 1143-1154.
[12] Katzenbach, R., Schmitt, A., & Turek, J. (2005). Assessing settlement of high-rise structures by 3D simulations. Computer-Aided Civil and Infrastructure Engineering, 20(3), 221–229. doi:10.1111/j.1467-8667.2005.00389.x.
[13] Giretti, D. (2010). Modeling of piled raft foundation in sand, Ph.D. Thesis, Ferrara University, Ferrara, Italy.
[14] Reul, O. (2004). Numerical Study of the Bearing Behavior of Piled Rafts. International Journal of Geomechanics, 4(2), 59–68. doi:10.1061/(asce)1532-3641(2004)4:2(59).
[15] de Sanctis, L., & Mandolini, A. (2006). Bearing Capacity of Piled Rafts on Soft Clay Soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(12), 1600–1610. doi:10.1061/(asce)1090-0241(2006)132:12(1600).
[16] Oh, E. Y. N., Huang, M., Surarak, C., Adamec, R., & Balasurbamaniam, A. S. (2008). Finite element modeling for piled raft foundation in sand. Eleventh East Asia-Pacific Conference on Structural Engineering & Construction (EASEC-11), "Building a Sustainable Environment” (November 19-21, 2008), Taipei, Taiwan.
[17] Vali, R. (2021). Water Table Effects on the Behaviors of the Reinforced Marine Soil-footing System. Journal of Human, Earth, and Future, 2(3), 296–305. doi:10.28991/hef-2021-02-03-09
[18] Lee, S. W., Cheang, W. W. L., Swolfs, W. M., & Brinkgreve, R. B. J. (2010). Modelling of piled rafts with different pile models. In Numerical Methods in Geotechnical Engineering - Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering, 637–642. doi:10.1201/b10551-118.
[19] Lee, J. H., Kim, Y., & Jeong, S. (2010). Three-dimensional analysis of bearing behavior of piled raft on soft clay. Computers and Geotechnics, 37(1–2), 103–114. doi:10.1016/j.compgeo.2009.07.009.
[20] Leung, Y. F., Klar, A., & Soga, K. (2010). Theoretical Study on Pile Length Optimization of Pile Groups and Piled Rafts. Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 319–330. doi:10.1061/(asce)gt.1943-5606.0000206.
[21] Cho, J., Lee, J. H., Jeong, S., & Lee, J. (2012). The settlement behavior of piled raft in clay soils. Ocean Engineering, 53, 153–163. doi:10.1016/j.oceaneng.2012.06.003.
[22] Fakharian, K., & Khanmohammadi, M. R. (2013). Evaluation of the effect of geometric characteristics of a piled-raft on its behavior on soft clay under drained conditions. Sharif Journal of Civil Engineering, (2), 71-76.
[23] Nakanishi, K., & Takewaki, I. (2013). Optimum pile arrangement in piled raft foundation by using simplified settlement analysis and adaptive step-length algorithm. Geomechanics and Engineering, 5(6), 519–540. doi:10.12989/gae.2013.5.6.519.
[24] Sinha, A., & Hanna, A. M. (2017). 3D Numerical Model for Piled Raft Foundation. International Journal of Geomechanics, 17(2), 04016055. doi:10.1061/(asce)gm.1943-5622.0000674.
[25] Alimunnisa, S., & Arora, V. K. (2019). Model study of piled raft foundation. Lecture Notes in Civil Engineering, 31, 113–122. doi:10.1007/978-981-13-7010-6_10.
[26] Vinh, L.B., Le Huong, T., Khanh, L.B., Thao, H.T. (2020). Studies on the Effects of Raft and Piles on Behavior of Piled Raft Foundations. Lecture Notes in Civil Engineering, 80. doi:10.1007/978-981-15-5144-4_76.
[27] Seethalakshmi, P., Dey, R., & Juneja, A. (2021). A Numerical Study on the Behavior of Disconnected Composite Piled Raft, Composite Piled Raft, and Unpiled Raft under Axial Load. IFCEE, 2021, 508–518. doi:10.1061/9780784483404.046.
[28] Golchha, S.K., Shukla, J.K., Joshi, N.H. (2022). Analysis of Pile Group and Piled Raft as a Foundation System. Lecture Notes in Civil Engineering, 167. doi:10.1007/978-981-16-3383-6_66.
[29] Gupta, R. M., Shukla, J. C., & Joshi, N. H. (2021). A Study of Piled Raft Foundation. Lecture Notes in Civil Engineering, 133, 557–569. doi:10.1007/978-981-33-6346-5_48.
[30] Oliveira, E. A. dos S., Justino, M. O., & Garcia, J. R. (2022). Numerical analysis of piled rafts with short bored piles. Revista IBRACON de Estruturas e Materiais, 15(4). doi:10.1590/s1983-41952022000400008.
[31] Clancy, P., & Randolph, M. F. (1996). Simple design tools for piled raft foundations. Geotechnique, 46(2), 313–328. doi:10.1680/geot.1996.46.2.313.
[32] El-Mossallamy, Y. M., Lutz, B., & Duerrwang, R. (2009). Special aspects related to the behavior of piled raft foundation. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 2, 1366–1369. doi:10.3233/978-1-60750-031-5-1366.
[33] Yamashita, K., Yamada, T., & Hamada, J. (2011). Investigation of settlement and load sharing on piled rafts by monitoring full-scale structures. Soils and Foundations, 51(3), 513–532. doi:10.3208/sandf.51.513.
[34] Yamashitaa, K., & Hamada, J. (2013). Load Sharing Behaviour of Piled Raft Supporting Tall Building Constructed By Top–Down Method. Proceedings of the 18th Southeast Asian Geotechnical Conference (18SEAGC) & Inaugural AGSSEA Conference, 1AGSSEA, 859–864. doi:10.3850/978-981-07-4948-4_124.
[35] Lee, J., Park, D., & Choi, K. (2014). Analysis of load sharing behavior for piled rafts using normalized load response model. Computers and Geotechnics, 57, 65–74. doi:10.1016/j.compgeo.2014.01.003.
[36] Vakili, R. (2015). Load sharing mechanism of piled-raft foundation in sand, Ph. D. Thesis, Concordia University, Montreal, Canada. Available online: https://spectrum.library.concordia.ca/id/eprint/979692/ (accessed on January 2022).
[37] Zhu, X. J. (2017). Analysis of the Load Sharing Behaviour and Cushion Failure Mode for a Disconnected Piled Raft. Advances in Materials Science and Engineering, 1–13. doi:10.1155/2017/3856864.
[38] Benmoussa, S., Benmebarek, S., & Benmebarek, N. (2021). Bearing Capacity Factor of Circular Footings on Two-layered Clay Soils. Civil Engineering Journal, 7(5), 775–785. doi:10.28991/cej-2021-03091689.
[39] Balakumar, V., Huang, M. J., Oh, E., Jayasiri, N. S., Hwang, R., & Balasubramaniam, A. S. (2021). Piled raft on sandy soil - An observational study. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 52(3), 51–65.
[40] Poulos, H. G. (1968). Analysis of the settlement of pile groups. Geotechnique, 18(4), 449–471. doi:10.1680/geot.1968.18.4.449.
[41] Poulos, H. G., & Davis, E. H. (1968). The settlement behaviour of single axially loaded incompressible piles and piers. Geotechnique, 18(3), 351–371. doi:10.1680/geot.1968.18.3.351.
[42] Poulos, H. G., & Davis, E. H. (1980). Pile foundation analysis and design. Wiley, New York, United States.
[43] Clancy, P., & Randolph, M. F. (1993). Simple design tests for piled raft foundations. Geotechnique, 36(2), 169-203.
[44] Poulos, H. G. (1994). An approximate numerical analysis of pile–raft interaction. International Journal for Numerical and Analytical Methods in Geomechanics, 18(2), 73–92. doi:10.1002/nag.1610180202.
[45] Kitiyodom, P., Matsumoto, T., & Sonoda, R. (2011). Approximate numerical analysis of a large piled raft foundation. Soils and Foundations, 51(1), 1–10. doi:10.3208/sandf.51.1.
[46] Nguyen, D. D. C., Jo, S. B., & Kim, D. S. (2013). Design method of piled-raft foundations under vertical load considering interaction effects. Computers and Geotechnics, 47, 16–27. doi:10.1016/j.compgeo.2012.06.007.
[47] Park, D., & Lee, J. (2015). Comparative Analysis of Various Interaction Effects for Piled Rafts in Sands Using Centrifuge Tests. Journal of Geotechnical and Geoenvironmental Engineering, 141(1), 04014082. doi:10.1061/(asce)gt.1943-5606.0001183.
[48] Nasrollahi, S. M., & Seyedi Hosseininia, E. (2019). A simplified solution for piled-raft foundation analysis by using the two-phase approach. Comptes Rendus - Mecanique, 347(10), 716–733. doi:10.1016/j.crme.2019.10.002.
[49] Chin, F. K. (1972). The inverse slope as a prediction of ultimate bearing capacity of piles. Proceedings of the 3rd Southeast Asian Conference on Soil Engineering, Hong Kong, (6-10 November 1972), 83-91.
[50] Elwakil, A. Z., & Azzam, W. R. (2016). Experimental and numerical study of piled raft system. Alexandria Engineering Journal, 55(1), 547–560. doi:10.1016/j.aej.2015.10.001.
[51] Banerjee, P. K. (1970). Discussion on "Settlement and Construction Aspects.” Behaviour of Piles, Proceedings of Conference Organized by the Institution of Civil Engineering, London, United Kingdom, (September 1970), 207.
[52] Horikoshi, K., & Randolph, M. F. (1999). Estimation of overall settlement of piled rafts. Soils and Foundations, 39(2), 59–68. doi:10.3208/sandf.39.2_59.
[53] El-Garhy, B., Galil, A. A., Youssef, A. F., & Raia, M. A. (2013). Behavior of raft on settlement reducing piles: Experimental model study. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 389–399. doi:10.1016/j.jrmge.2013.07.005.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
