Properties of Concrete Produced using Surface Modified Polyethylene Terephthalate Fibres
Downloads
Doi: 10.28991/CEJ-2022-08-06-03
Full Text: PDF
[2] Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188. doi:10.1016/j.conbuildmat.2015.05.105.
[3] Aslani, H., Pashmtab, P., Shaghaghi, A., Mohammadpoorasl, A., Taghipour, H., & Zarei, M. (2021). Tendencies towards bottled drinking water consumption: Challenges ahead of polyethylene terephthalate (PET) waste management. Health Promotion Perspectives, 11(1), 60–68. doi:10.34172/hpp.2021.09.
[4] Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. Urban Development Series, World Bank Publications.
[5] Akçaözoğlu, S., Atiş, C. D., & Akçaözoğlu, K. (2010). An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste management, 30(2), 285-290. doi:10.1016/j.wasman.2009.09.033.
[6] Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A., & Sherwani, A. F. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769. doi:10.1016/j.compositesb.2021.108769.
[7] Tejaswini, M. S. S. R., Pathak, P., Ramkrishna, S., & Ganesh, S. P. (2022). A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities. Science of the Total Environment, 153973. doi:10.1016/j.scitotenv.2022.153973.
[8] Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J., & Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32(3), 232–240. doi:10.1016/j.cemconcomp.2009.11.002.
[9] Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. doi:10.1016/j.cemconcomp.2007.02.002.
[10] Borg, R. P., Baldacchino, O., & Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, 108, 29–47. doi:10.1016/j.conbuildmat.2016.01.029.
[11] Mohammed, A. A., & Rahim, A. A. F. (2020). Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Construction and Building Materials, 244, 118350. doi:10.1016/j.conbuildmat.2020.118350.
[12] Marthong, C., & Sarma, D. K. (2016). Influence of PET fiber geometry on the mechanical properties of concrete: An experimental investigation. European Journal of Environmental and Civil Engineering, 20(7), 771–784. doi:10.1080/19648189.2015.1072112.
[13] Al-Hadithi, A. I., & Abbas, M. A. (2018). The effects of adding waste plastic fibers on the flexural toughness of normal concrete. Journal of Engineering and Applied Sciences, 13(24), 10282–10290. doi:10.3923/jeasci.2018.10282.10290.
[14] Pereira De Oliveira, L. A., & Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712–1717. doi:10.1016/j.conbuildmat.2010.11.044.
[15] Zhang, R., Ma, X., Shen, X., Zhai, Y., Zhang, T., Ji, C., & Hong, J. (2020). PET bottles recycling in China: An LCA coupled with LCC case study of blanket production made of waste PET bottles. Journal of environmental management, 260, 110062. doi:10.1016/j.jenvman.2019.110062.
[16] Khalid, F. S., Irwan, J. M., Ibrahim, M. H. W., Othman, N., & Shahidan, S. (2018). Performance of plastic wastes in fiber-reinforced concrete beams. Construction and Building Materials, 183, 451–464. doi:10.1016/j.conbuildmat.2018.06.122.
[17] Singh, S., Shukla, A., & Brown, R. (2004). Pullout behavior of polypropylene fibers from cementitious matrix. Cement and Concrete Research, 34(10), 1919–1925. doi:10.1016/j.cemconres.2004.02.014.
[18] Meza, A., Pujadas, P., López-Carreño, R. D., Meza, L. M., & Pardo-Bosch, F. (2021). Mechanical optimization of concrete with recycled pet fibres based on a statistical-experimental study. Materials, 14(2), 1–20. doi:10.3390/ma14020240.
[19] Taherkhani, H. (2014). An investigation on the properties of the concrete containing waste PET fibers. International Journal of Science and Engineering Investigations, 3, 37-43. doi:10.12691/ajcea-3-3-4.
[20] Meza, A., & Siddique, S. (2019). Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Construction and Building Materials, 213, 286–291. doi:10.1016/j.conbuildmat.2019.04.081.
[21] Trejbal, J., Kopeckí½, L., Tesárek, P., Fládr, J., AntoŠ¡, J., Somr, M., & Neоerka, V. (2016). Impact of surface plasma treatment on the performance of PET fiber reinforcement in cementitious composites. Cement and Concrete Research, 89, 276–287. doi:10.1016/j.cemconres.2016.08.018.
[22] Kumar, A., & Suman, S. K. (2018). Effect of geometry of recycled pet fiber on the properties of concrete for rigid pavement. International Journal of Recent Scientific Research, 9(3). doi:10.24327/IJRSR.2018.0903.1775.
[23] Kim, J. H. J., Park, C. G., Lee, S. W., Lee, S. W., & Won, J. P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39(3), 442–450. doi:10.1016/j.compositesb.2007.05.001.
[24] BS EN 197-1 (2011) Cement: composition, specifications and conformity criteria for common cements. British Standards Institution, London, United Kingdom.
[25] Al-Mahmoud, F., Castel, A., François, R., & Tourneur, C. (2007). Effect of surface pre-conditioning on bond of carbon fibre reinforced polymer rods to concrete. Cement and Concrete Composites, 29(9), 677–689. doi:10.1016/j.cemconcomp.2007.04.010.
[26] BS 812-103.1. (1985). Testing concrete, Methods for determination of particle size distribution - Sieve tests. British Standards Institution, London, United Kingdom.
[27] BS 812-Part 2. (1995). Testing aggregates, Part2. Methods of determination of density. British Standards Institution, London, United Kingdom.
[28] BS 812-109. (1990). Testing aggregates-Part 109: Methods for determination of moisture content. British Standards Institution, London, United Kingdom.
[29] BS 812-110. (1990). Testing aggregates-Part 110: Methods for determination of aggregate crushing value (ACV). British Standards Institution, London, United Kingdom.
[30] BS 812-112. (1990). Testing aggregates-Part 112: Methods for determination of aggregate impact value (AIV). British Standards Institution, London, United Kingdom.
[31] BS EN 14889-2 (2006). Fibers for concrete - Part 2: Polymer fibers - Definitions, specifications and conformity. British Standards Institution, London, United Kingdom.
[32] Clayton, D., Franklin, R. E., & Erntroy, H. C. (1988). Design of normal concrete mixes. Building Research Establishment (BRE), Gartson, United Kingdom.
[33] BS 1881-102. (1983). Testing concrete-Part 102: Method for determination of slump. British Standards Institution, London, United Kingdom.
[34] BS 1881-116. (1983). Testing concrete-Part 116-: Method for determination of compressive strength of concrete cubes. British Standards Institution, London, United Kingdom.
[35] BS 1881-101. (1983). Testing concrete-Part 101: Method of sampling fresh concrete on site. British Standards Institution, London, United Kingdom.
[36] BS 1881-117. (1983). Testing concrete-Part 117. Method for determination of tensile splitting strength. British Standards Institution, London, United Kingdom.
[37] BS 1881-118. (1983). Testing concrete-Part 118. Method for determination of flexural strength. British Standards Institution, London, United Kingdom.
[38] BS 1881-108. (1983). Testing Concrete-Part 108: Method for making Test Cubes from Fresh Concrete. British Standards Institution, London, United Kingdom.
[39] BS 1881-110. (1983). Testing concrete-Part 110: Method for making test cylinders from fresh concrete. British Standards Institution, London, United Kingdom.
[40] BS 1881-109. (1983). Testing concrete-Part 109: Method for making test beams from fresh concrete. British Standards Institution, London, United Kingdom.
[41] BS 882. (1992). Specification for aggregates from natural sources for concrete. British Standards Institution, London, United Kingdom.
[42] BS EN 12620. (2013). Aggregates for concrete. British Standards Institution, London, United Kingdom.
[43] Awoyera, P. O., Olalusi, O. B., & Iweriebo, N. (2021). Physical, strength, and microscale properties of plastic fiber-reinforced concrete containing fine ceramics particles. Materialia, 15, 100970. doi:10.1016/j.mtla.2020.100970.
[44] Marthong, C. (2015). Effects of PET fiber arrangement and dimensions on mechanical properties of concrete. IES Journal Part A: Civil and Structural Engineering, 8(2), 111–120. doi:10.1080/19373260.2015.1014304.
[45] Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., & Incarnato, L. (2011). Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite Structures, 93(9), 2368–2374. doi:10.1016/j.compstruct.2011.03.025.
[46] Bui, N. K., Satomi, T., & Takahashi, H. (2018). Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management, 78, 79–93. doi:10.1016/j.wasman.2018.05.035.
[47] Foti, D. (2013). Use of recycled waste pet bottles fibers for the reinforcement of concrete. Composite Structures, 96, 396–404. doi:10.1016/j.compstruct.2012.09.019.
[48] Won, J. P., Jang, C. IL, Lee, S. W., Lee, S. J., & Kim, H. Y. (2010). Long-term performance of recycled PET fibre-reinforced cement composites. Construction and Building Materials, 24(5), 660–665. doi:10.1016/j.conbuildmat.2009.11.003.
[49] Hidaya, N., Mutuku, R. N., & Mwero, J. N. (2017). Physical and Mechanical Experimental Investigation of Concrete incorporated with Polyethylene Terephthalate (PET) Fibers. European International Journal of Science and Technology, 6(8), 2304–9693.
[50] Kassa, R. B., Kanali, C., & Ambassah, N. (2019). Engineering properties of polyethylene terephthalate fibre reinforced concrete with fly ash as a partial cement replacement. Civil and Environmental Research, 11(6). doi:10.4236/ojce.2019.94020.
[51] Fraternali, F., Farina, I., Polzone, C., Pagliuca, E., & Feo, L. (2013). On the use of R-PET strips for the reinforcement of cement mortars. Composites Part B: Engineering, 46, 207–210. doi:10.1016/j.compositesb.2012.09.070.
[52] Anandan, S., & Alsubih, M. (2021). Mechanical strength characterization of plastic fiber reinforced cement concrete composites. Applied Sciences (Switzerland), 11(2), 1–21. doi:10.3390/app11020852.
[53] Sayı, C. Ö., & Eren, Ö. (2021). Physical and durability properties of recycled polyethylene terephthalate (PET) fibre reinforced concrete. European Journal of Environmental and Civil Engineering, 1–19. doi:10.1080/19648189.2021.1976681.
[54] Mohammed, A. A., & Mohammed, I. I. (2021). Effect of Fiber Parameters on the Strength Properties of Concrete Reinforced with PET Waste Fibers. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(3), 1493–1509. doi:10.1007/s40996-021-00663-2.
[55] Marthong, C., & Marthong, S. (2016). An experimental study on the effect of PET fibers on the behavior of exterior RC beam-column connection subjected to reversed cyclic loading. Structures, 5, 175–185. doi:10.1016/j.istruc.2015.11.003.
[56] Al-Hadithi, A. I., Abdulrahman, M. B., & Al-Rawi, M. I. (2020). Flexural behaviour of reinforced concrete beams containing waste plastic fibers. IOP Conference Series: Materials Science and Engineering, 737(1), 012173. doi:10.1088/1757-899X/737/1/012173.
[57] Ayub, T., Khan, S. U., & Mahmood, W. (2022). Mechanical Properties of Self-Compacting Rubberised Concrete (SCRC) Containing Polyethylene Terephthalate (PET) Fibres. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(2), 1073–1085. doi:10.1007/s40996-020-00568-6.
[58] Haque, M. R., Mostafa, M. S., & Sah, S. K. (2021). Performance evaluation for mechanical behaviour of concrete incorporating recycled plastic bottle fibers as locally available materials. Civil Engineering Journal, 7(4), 713-719. doi:10.28991/cej-2021-03091684.
[59] Ninan, C. M., Mubashir A. P, M., Faruq C, U., Nasik K, M., Shafen P. K, M., & Faris K. T, S. (2018). An Investigation on the Strength Development of Concrete Reinforced with PET Bottles. International Journal of Civil Engineering, 5(6), 1–5. doi:10.14445/23488352/ijce-v5i6p101.
[60] Sharma, R., Kaushik, R., & Sharma, T. (2014). Effect of PET fibres different aspect ratio on fresh and mechanical properties of cement concrete. Proceedings of the Asia-Pacific Young Researchers and Graduates Symposium (YRGS 2014), July 31-August 01, 2014, Bangkok, Thailand. doi:10.13140/RG.2.1.2418.7609.
[61] Merli, R., Preziosi, M., Acampora, A., Lucchetti, M. C., & Petrucci, E. (2020). Recycled fibers in reinforced concrete: A systematic literature review. Journal of Cleaner Production, 248, 119207. doi:10.1016/j.jclepro.2019.119207.
[62] Tayeh, B. A., Almeshal, I., Magbool, H. M., Alabduljabbar, H., & Alyousef, R. (2021). Performance of sustainable concrete containing different types of recycled plastic. Journal of Cleaner Production, 328, 129517. doi:10.1016/j.jclepro.2021.129517.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
