Experimental Research on the Effects of Waste Foundry Sand on the Strength and Micro-Structural Properties of Concrete
Abstract
Doi: 10.28991/CEJ-2022-08-10-010
Full Text: PDF
Keywords
References
Bhardwaj, B., & Kumar, P. (2017). Waste foundry sand in concrete: A review. Construction and Building Materials, 156, 661-674. doi:10.1016/j.conbuildmat.2017.09.010.
Ahmad, J., Zhou, Z., Martínez-García, R., Vatin, N. I., De-Prado-gil, J., & El-Shorbagy, M. A. (2022). Waste Foundry Sand in Concrete Production Instead of Natural River Sand: A Review. Materials, 15(7), 10 3390 15072365. doi:10.3390/ma15072365.
Al-shaarbaf, I. A. S., Ali, A. A., & Ahmed, M. A. (2019). Experimental Behavior of Self Compacted Concrete Voided Slab Strips Under Repeated Loads. 12th International Conference on Developments in ESystems Engineering (DeSE). doi:10.1109/dese.2019.00118.
Saand, A., Ali, K., Kumar, A., Bheel, N., & Keerio, M. A. (2021). Effect of metakaolin developed from natural material Soorh on fresh and hardened properties of self-compacting concrete. Innovative Infrastructure Solutions, 6(3), 1-10. doi:10.1007/s41062-021-00534-9.
Mohammad, A. H., Abdulrazzaq, N. M., & Mawlood, B. O. (2019). Bond between Steel Bar Embedded in High Strength Self Compacting Concrete with and without Fibers. 2019 International Engineering Conference (IEC). doi:10.1109/iec47844.2019.8950515.
Saand, A., Ali, K., Kumar, A., Bheel, N., & Keerio, M. A. (2021). Effect of metakaolin developed from natural material Soorh on fresh and hardened properties of self-compacting concrete. Innovative Infrastructure Solutions, 6(3), 1-10. doi:10.1007/s41062-021-00534-9.
Faraj, R. H., Mohammed, A. A., & Omer, K. M. (2022). Modeling the compressive strength of eco-friendly self-compacting concrete incorporating ground granulated blast furnace slag using soft computing techniques. Environmental Science and Pollution Research, 1-20. doi:10.1007/s11356-022-20889-5.
Singh, G., & Siddique, R. (2012). Effect of waste foundry sand (WFS) as partial replacement of sand on the strength, ultrasonic pulse velocity and permeability of concrete. Construction and Building Materials, 26(1), 416–422. doi:10.1016/j.conbuildmat.2011.06.041.
IS 455: 1989. (1989). Portland Slag Cement-Specification. Bureau of Indian Standards, New Delhi, India.
IS 12269: 2013. (2013). Ordinary Portland Cement, 53 Grade-Specification. Bureau of Indian Standards, New Delhi, India.
IS: 4031 (Part 11)-1988. (1988). Methods of Physical Tests for Hydraulic Cement. Bureau of Indian Standards, New Delhi, India.
IS: 383-1970. (1970). Specification for Coarse and fine Aggregate from Natural Sources for. Bureau of Indian Standards, New Delhi, India.
IS 10262: 2009. (2009). Concrete Mix Proportioning-guidelines. Bureau of Indian Standards, New Delhi, India.
IS: 1199-1959. (1959). Methods of Sampling and Analysis of Concrete. Bureau of Indian Standards, New Delhi, India.
IS: 516-1959. (1959). Methods of Tests for Strength of Concrete. Bureau of Indian Standards, New Delhi, India.
IS 1159-1959. (1959). Baking Powder. Bureau of Indian Standards. Bureau of Indian Standards, New Delhi, India.
Tran, H. B. (2021). Mechanical Properties of Coarse Aggregate Electric Arc Furnace Slag in Cement Concrete. Civil Engineering Journal, 7(10), 1716-1730. doi:10.28991/cej-2021-03091755.
Li, H., Wu, A., & Cheng, H. (2022). Generalized models of slump and spread in combination for higher precision in yield stress determination. Cement and Concrete Research, 159, 106863. doi:10.1016/j.cemconres.2022.106863.
Siddique, R., & Singh, G. (2011). Utilization of waste foundry sand (WFS) in concrete manufacturing. Resources, Conservation and Recycling, 55(11), 885-892. doi:10.1016/j.resconrec.2011.05.001.
Bilal, H., Yaqub, M., Ur Rehman, S. K., Abid, M., Alyousef, R., Alabduljabbar, H., & Aslam, F. (2019). Performance of foundry sand concrete under ambient and elevated temperatures. Materials, 12(16), 2645. doi:10.3390/ma12162645.
Siddique, R., Singh, G., & Singh, M. (2018). Recycle option for metallurgical by-product (Spent Foundry Sand) in green concrete for sustainable construction. Journal of Cleaner Production, 172, 1111–1120. doi:10.1016/j.jclepro.2017.10.255.
Thiruvenkitam, M., Pandian, S., Santra, M., & Subramanian, D. (2020). Use of waste foundry sand as a partial replacement to produce green concrete: Mechanical properties, durability attributes and its economical assessment. Environmental Technology & Innovation, 19, 101022. doi:10.1016/j.eti.2020.101022.
de Barros Martins, M. A., Barros, R. M., Silva, G., & dos Santos, I. F. S. (2019). Study on waste foundry exhaust sand, WFES, as a partial substitute of fine aggregates in conventional concrete. Sustainable cities and society, 45, 187-196. doi:10.1016/j.scs.2018.11.017.
Siddique, R., Aggarwal, Y., Aggarwal, P., Kadri, E.-H., & Bennacer, R. (2011). Strength, durability, and micro-structural properties of concrete made with used-foundry sand (UFS). Construction and Building Materials, 25(4), 1916–1925. doi:10.1016/j.conbuildmat.2010.11.065.
Parashar, A., Aggarwal, P., Saini, B., Aggarwal, Y., & Bishnoi, S. (2020). Study on performance enhancement of self-compacting concrete incorporating waste foundry sand. Construction and Building Materials, 251, 118875. doi:10.1016/j.conbuildmat.2020.118875.
Kaur, G., Siddique, R., & Rajor, A. (2012). Properties of concrete containing fungal treated waste foundry sand. Construction and Building Materials, 29, 82–87. doi:10.1016/j.conbuildmat.2011.08.091.
Prabhu, G., Hyun, J. H., & Kim, Y. Y. (2014). Effects of foundry sand as a fine aggregate in concrete production. Construction and Building Materials, 70, 514–521. doi:10.1016/j.conbuildmat.2014.07.070.
Ahmad, J., Aslam, F., Zaid, O., Alyousef, R., & Alabduljabbar, H. (2021). Mechanical and durability characteristics of sustainable concrete modified with partial substitution of waste foundry sand. Structural Concrete, 22(5), 2775–2790. doi:10.1002/suco.202000830.
Prabhu, G., Bang, J. W., Lee, B. J., Hyun, J. H., & Kim, Y. Y. (2015). Mechanical and Durability Properties of Concrete Made with Used Foundry Sand as Fine Aggregate. Advances in Materials Science and Engineering, 2015, 161753. doi:10.1155/2015/161753.
Luhar, S., Cheng, T. W., Nicolaides, D., Luhar, I., Panias, D., & Sakkas, K. (2019). Valorisation of glass wastes for the development of geopolymer composites – Durability, thermal and microstructural properties: A review. Construction and Building Materials, 222, 673–687. doi:10.1016/j.conbuildmat.2019.06.169.
Basar, H. M., & Deveci Aksoy, N. (2012). The effect of waste foundry sand (WFS) as partial replacement of sand on the mechanical, leaching and micro-structural characteristics of ready-mixed concrete. Construction and Building Materials, 35, 508–515. doi:10.1016/j.conbuildmat.2012.04.078.
DOI: 10.28991/CEJ-2022-08-10-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 KARRE ARCHANESWAR KUMAR

This work is licensed under a Creative Commons Attribution 4.0 International License.