Maximum Strain Effect and Secant Modulus Variation of Hemic Peat Soil at large Deformation due to Cyclic Loading
Downloads
Doi: 10.28991/CEJ-2022-08-10-015
Full Text: PDF
[2] Daniel-Mkpume, C. C., Okonkwo, E. G., Aigbodion, V. S., Offor, P. O., & Nnakwo, K. C. (2019). Silica sand modified aluminium composite: an empirical study of the physical, mechanical and morphological properties. Materials Research Express, 6(7), 076539. doi:10.1088/2053-1591/ab14c6.
[3] O'Kelly, B. C., & Zhang, L. (2013). Consolidated-drained triaxial compression testing of peat. Geotechnical Testing Journal, 36(3). doi:10.1520/GTJ20120053.
[4] Mohamad, H. M., & Zainorabidin, A. (2021). Young'S Modulus of Peat Soil under Cyclic Loading. International Journal of GEOMATE, 21(84), 177–187. doi:10.21660/2021.84.j2164.
[5] Pillai, R. J., Nazeeh, K. M., & Robinson, R. G. (2014). Post-Cyclic Behaviour of Clayey Soil. Indian Geotechnical Journal, 44(1), 39–48. doi:10.1007/s40098-013-0042-x.
[6] Wang, Z., Li, M., Shen, L., & Wang, J. (2022). Incorporating clay as a natural and enviro-friendly partial replacement for cement to reduce carbon emissions in peat stabilisation: An experimental investigation. Construction and Building Materials, 353, 128901. doi:10.1016/j.conbuildmat.2022.128901.
[7] Sitharam, T., Govinda Raju, L., Murthi, S., & B. (2004). Cyclic and monotonic undrained shear response of silty sand from Bhuj region in India. ISET Journal of Earthquake Technology, 41(2), 249–260.
[8] Sulaiman, M. S., Mohamad, H. M., & Suhaimi, A. A. (2022). A Study on Linear Shrinkage Behavior of Peat Soil Stabilized with Eco-Processed Pozzolan (EPP). Civil Engineering Journal, 8(6), 1157-1166. doi:10.28991/CEJ-2022-08-06-05.
[9] Siang, A. L. M. S. (2014). Development of a New Sand Particle Clustering Method with Respect to its Static and Dyanmic Morphological and Structural Characteristics. Ph.D. Thesis, University Tun Hussein Onn Malaysia (UTHM), Johor Bahru, Malaysia.
[10] Yokota, K., Imai, T., & Konno, M. (1981). Dynamic deformation characteristics of soils determined by laboratory tests. OYO Tec. Rep, 3, 13-37.
[11] Kishida, T., Boulanger, R. W., Abrahamson, N. A., Wehling, T. M., & Driller, M. W. (2009). Regression Models for Dynamic Properties of Highly Organic Soils. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 533–543. doi:10.1061/(asce)1090-0241(2009)135:4(533).
[12] Kramer, S. L. (2000). Dynamic Response of Mercer Slough Peat. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 504–510. doi:10.1061/(asce)1090-0241(2000)126:6(504).
[13] Boulanger, R. W., Arulnathan, R., Harder, L. F., Torres, R. A., & Driller, M. W. (1998). Dynamic Properties of Sherman Island Peat. Journal of Geotechnical and Geoenvironmental Engineering, 124(1), 12–20. doi:10.1061/(asce)1090-0241(1998)124:1(12).
[14] Seed, H. B., & Chan, C. K. (1966). Clay Strength under Earthquake Loading Conditions. Journal of the Soil Mechanics and Foundations Division, 92(2), 53–78. doi:10.1061/jsfeaq.0000867.
[15] Dabdab, A. J. (2019). The Behavior of Clay Soil under the Effect of Cyclic Loading. Journal of Geotechnical Studies, 4(1), 12–18. doi:10.5281/zenodo.2551116.
[16] Erken A., & íœlker, M.B.C. (2008). The Post-Cyclic Shear Strength of Fine-Grained Soils. The 14th World Conference on Earthquake Engineering, 12-17 October, 2008, Beijing, China.
[17] Wang, S. (2011). Postcyclic behavior of low-plasticity silt. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, United States.
[18] Yasuhara, K., Hirao, K., & FL Hyde, A. (1992). Effects of cyclic loading on undrained strength and compressibility of clay. Soils and Foundations, 32(1), 100–116. doi:10.3208/sandf1972.32.100.
[19] Chen, C., Xu, G., Zhou, Z., Kong, L., Zhang, X., & Yin, S. (2020). Undrained dynamic behaviour of peaty organic soil under long-term cyclic loading, Part II: Constitutive model and simulation. Soil Dynamics and Earthquake Engineering, 129, 279–291. doi:10.1016/j.soildyn.2019.01.039.
[20] Sarkar, G., & Sadrekarimi, A. (2022). Cyclic shearing behavior and dynamic characteristics of a fibrous peat. Canadian Geotechnical Journal, 59(5), 688–701. doi:10.1139/cgj-2020-0516
[21] Zhang, J., Sun, Y., & Cao, J. (2020). Experimental Study on the Deformation and Strength Characteristics of Saturated Clay under Cyclic Loading. Advances in Civil Engineering, 2020, 9. doi:10.1155/2020/7456596.
[22] Zhu, Z., Zhang, C., Wang, J., Zhang, P., & Zhu, D. (2021). Cyclic Loading Test for the Small-Strain Shear Modulus of Saturated Soft Clay and Its Failure Mechanism. Geofluids, 2021, 13. doi:10.1155/2021/2083682.
[23] Moghal, A. A. B., & Vydehi, K. V. (2021). State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innovative Infrastructure Solutions, 6(2), 1-14. doi:10.1007/s41062-021-00462-8.
[24] Liu, H., Du, X., Li, Y., Han, X., Li, B., Zhang, X., ... & Liang, W. (2022). Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. Journal of Cleaner Production, 347, 131323. doi:10.1016/j.jclepro.2022.131323.
[25] Boulanger, R. W., & Idriss, I. M. (2007). Evaluation of Cyclic Softening in Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 641–652. doi:10.1061/(asce)1090-0241(2007)133:6(641).
[26] Wu, J. D., Guo, L. P., & Qin, Y. Y. (2021). Preparation and characterization of ultra-high-strength and ultra-high-ductility cementitious composites incorporating waste clay brick powder. Journal of Cleaner Production, 312, 127813. doi:10.1016/j.jclepro.2021.127813.
[27] Talib, F. M., Mohamad, H. M., & Mustafa, M. N. (2021). Peat Soil Improvement with Bamboo Reinforcement Technology: a Review. International Journal of GEOMATE, 21(88), 75–85. doi:10.21660/2021.88.j2259.
[28] Shafiee, A., Scott, J. B., & Jonathan, P. S. (2013). Laboratory Evaluation of Seismic Failure Mechanisms of Levees on Peat. Ph.D. Thesis, University of California, Los Angeles, United States.
[29] Samir El-Kady, M., & ElMesmary, M. A. (2018). Cyclic strengths for high density soils related to pore water pressure. Innovative Infrastructure Solutions, 3(1), 1-10. doi:10.1007/s41062-018-0142-7.
[30] Zainorabidin, A., & Mohamad, H. M. (2015). Pre- and post-cyclic behavior on monotonic shear strength of Penor peat. Electronic Journal of Geotechnical Engineering, 20(16), 6927–6935.
[31] Das, B. M., & Sobhan, KH. (2011). Principles of geotechnical engineering (9th Ed.). Cengage Learning, Boston, United States.
[32] Karaca, H., Depci, T., Karta, M., & Coskun, M. A. (2016). Liquefaction Potential of Adiyaman Peat. IOP Conference Series: Earth and Environmental Science, 44, 052050. doi:10.1088/1755-1315/44/5/052050.
[33] Zainorabidin, A., & Mohamad, H. M. (2016). A geotechnical exploration of Sabah peat soil: Engineering classifications and field surveys. Electronic Journal of Geotechnical Engineering, 21(20), 6671–6687.
[34] Zergoun, M., & Vaid, Y. P. (1994). Effective stress response of clay to undrained cyclic loading. Canadian Geotechnical Journal, 31(5), 714–727. doi:10.1139/t94-083.
[35] Wichtmann, T., Andersen, K. H., Sjursen, M. A., & Berre, T. (2013). Cyclic tests on high-quality undisturbed block samples of soft marine Norwegian clay. Canadian Geotechnical Journal, 50(4), 400–412. doi:10.1139/cgj-2011-0390.
[36] Mohamad, H. M., Zainorabidin, A., Musta, B., Mustafa, M. N., Amaludin, A. E., & Abdurahman, M. N. (2021). Compressibility behaviour and engineering properties of north borneo peat soil. Eurasian Journal of Soil Science, 10(3), 259–268. doi:10.18393/ejss.930620.
[37] Zainorabidin, A., & Mohamad, H. M. (2016). Preliminary peat surveys in ecoregion delineation of North Borneo: Engineering perspective. Electronic Journal of Geotechnical Engineering, 21(12), 4485–4493.
[38] Basevich, V. F. (2022). Heterogeneity of Podzolic Soils: Genesis, Methodological and Methodical Aspects of Study. Moscow University Soil Science Bulletin, 77(3), 128-136. doi:10.3103/S0147687422030024.
[39] BS 1377-2:2022. (2022). Methods of test for soils for civil engineering purposes-Classification tests and determination of geotechnical properties. British Standards Institution (BSI), London, United Kingdom.
[40] ASTM D1997-91. (2008). Standard Test Method for Laboratory Determination of the Fibre Content of Peat Samples by Dry Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D1997-91R08.
[41] Huat, B. B. (2006). Deformation and shear strength characteristics of some tropical peat and organic soils. Pertanika Journal of Science & Technology, 14(1-2), 61-74.
[42] Zolkefle, S. N. A. (2014). The dynamic characteristic of Southwest Johor peat under different frequencies. Degree of Master in Civil Engineering Thesis, University Tun Hussein Onn Malaysia (UTHM), Johor Bahru, Malaysia.
[43] Kolay, P. K., Sii, H. Y., & Taib, S. N. L. (2011). Tropical peat soil stabilization using class F pond ash from coal fired power plant. Kolay, P. K., Sii, H. Y., & Taib, S. N. L. (2011). Tropical peat soil stabilization using class F pond ash from coal fired power plant. International Journal of Civil and Environmental Engineering, 3(2), 79-83.
[44] Diaz-Rodriguez, J. A., Moreno, P., & Salinas, G. (2000). Undrained shear behavior of Mexico City sediments during and after cyclic loading. 12th World Conference on Earthquake Engineering, 1652-1660, 30 January 4 February, 2000, Auckland, New Zealand.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
