Evaluation of Volumetric Properties of Cassava Peel Ash Modified Asphalt Mixtures
Vol. 8 No. 10 (2022): October
Research Articles
Downloads
Doi: 10.28991/CEJ-2022-08-10-07
Full Text: PDF
Aladegboye, O. J., Oguntayo, O.-. D., Al-Ihekwaba, E., Daniel, T. E., Chiadighikaobi, P. C., & Ng’andu, P. (2022). Evaluation of Volumetric Properties of Cassava Peel Ash Modified Asphalt Mixtures. Civil Engineering Journal, 8(10), 2110–2124. https://doi.org/10.28991/CEJ-2022-08-10-07
[1] Plati, C., & Cliatt, B. (2019). A sustainability perspective for unbound reclaimed asphalt pavement (RAP) as a pavement base material. Sustainability (Switzerland), 11(1), 1–17. doi:10.3390/su11010078.
[2] Modupe, A. E., Fadugba, O. G., Busari, A. A., Adeboje, A. O., Aladegboye, O. J., Alejolowo, O. O., & Chukwuma, C. G. (2021). Sustainability Assessment of the Engineering Properties of Asphalt Concrete Incorporating Pulverized Snail Shell Ash as Partial Replacement for Filler. IOP Conference Series: Earth and Environmental Science, 665(1), 12057. doi:10.1088/1755-1315/665/1/012057.
[3] Graham, L. A. (2018). Pavement Preservation Best Practices Technical Briefs. Ph.D. Thesis, University of Nevada, Reno, United States.
[4] Lee, K. W., & Mahboub, K. C. (2006). Asphalt mix design and construction: Past, present, and future. The Bituminous Material Committee of the Construction Institute of ASCE, A special publication for the 150th Anniversary of ASCE. doi:10.1061/9780784408421.
[5] Eswan, E., Adisasmita, S. A., Ramli, M. I., & Rauf, S. (2021). Characteristics of Asphalt Mixed Using Mountain Stone. Civil Engineering Journal, 7(2), 268-277. doi:10.28991/cej-2021-03091652.
[6] Chen, M., Lin, J., & Wu, S. (2011). Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and Building Materials, 25(10), 3909–3914. doi:10.1016/j.conbuildmat.2011.04.022.
[7] Chen, J.-S., Kuo, P.-H., Lin, P.-S., Huang, C.-C., & Lin, K.-Y. (2007). Experimental and theoretical characterization of the engineering behavior of bitumen mixed with mineral filler. Materials and Structures, 41(6), 1015–1024. doi:10.1617/s11527-007-9302-5.
[8] Abtahi, S. M., Sheikhzadeh, M., & Hejazi, S. M. (2010). Fiber-reinforced asphalt-concrete – A review. Construction and Building Materials, 24(6), 871–877. doi:10.1016/j.conbuildmat.2009.11.009.
[9] Kalantar, Z. N., Karim, M. R., & Mahrez, A. (2012). A review of using waste and virgin polymer in pavement. Construction and Building Materials, 33, 55–62. doi:10.1016/j.conbuildmat.2012.01.009.
[10] Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58–73. doi:10.1016/j.resconrec.2007.02.002.
[11] Shu, X., & Huang, B. (2014). Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview. Construction and Building Materials, 67, 217–224. doi:10.1016/j.conbuildmat.2013.11.027.
[12] Al-Hdabi, A. (2016). Laboratory investigation on the properties of asphalt concrete mixture with Rice Husk Ash as filler. Construction and Building Materials, 126, 544–551. doi:10.1016/j.conbuildmat.2016.09.070.
[13] Bi, Y., & Jakarni, F. (2019). Evaluating properties of wood ash modified asphalt mixtures. IOP Conference Series: Materials Science and Engineering, 512, 012004. doi:10.1088/1757-899x/512/1/012004.
[14] Modupe, A. E., Olayanju, T. M. A., Atoyebi, O. D., Aladegboye, S. J., Awolusi, T. F., Busari, A. A., Aderemi, P. O., & Modupe, O. C. (2019). Performance evaluation of hot mix asphaltic concrete incorporating cow bone ash (CBA) as partial replacement for filler. IOP Conference Series: Materials Science and Engineering, 640(1). doi:10.1088/1757-899X/640/1/012082.
[15] Adesanya, D. A., & Raheem, A. A. (2009). Development of corn cob ash blended cement. Construction and Building Materials, 23(1), 347–352. doi:10.1016/j.conbuildmat.2007.11.013.
[16] Oluwatuyi, O. E., Adeola, B. O., Alhassan, E. A., Nnochiri, E. S., Modupe, A. E., Elemile, O. O., Obayanju, T., & Akerele, G. (2018). Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Studies in Construction Materials, 9, e00191. doi:10.1016/j.cscm.2018.e00191.
[17] Adesanya, O. A., Oluyemi, K. A., Josiah, S. J., Adesanya, R., Shittu, L., Ofusori, D., ... & Babalola, G. (2008). Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. The Internet Journal of Microbiology, 5(1), 25-35. doi:10.5580/4f1.
[18] Adegoke, D. D., Ogundairo, T. O., Olukanni, D. O., & Olofinnade, O. M. (2019). Application of Recycled Waste Materials for Highway Construction: Prospect and Challenges. Journal of Physics: Conference Series, 1378(2), 22058. doi:10.1088/1742-6596/1378/2/022058.
[19] Ayodele, A. L., Mgboh, C. V, & Fajobi, A. B. (2021). Geotechnical properties of some selected lateritic soils stabilized with cassava peel ash and lime. Algerian Journal of Engineering and Technology, 04, 22–29. doi:10.5281/zenodo.4536448.
[20] Raheem, Arubike, E. D., & Awogboro, O. S. (2015). Effects of Cassava Peel Ash (CPA) as Alternative Binder in Concrete. International Journal of Constructive Research in Civil Engineering, 1(2), 27–32.
[21] Olatokunbo, O., Anthony, E., Rotimi, O., Solomon, O., Tolulope, A., John, O., & Adeoye, O. (2018). Assessment of strength properties of cassava peel ash-concrete. International Journal of Civil Engineering and Technology, 9(1), 965-974.
[22] Osuide, E. E., Ukeme, U., & Osuide, M. O. (2021). An assessment of the compressive strength of concrete made with cement partially replaced with cassava peel ash. SAU Science-Tech Journal, 6(1), 64-73.
[23] Olubunmi A, A., Taiye J., A., & Tobi, A. (2022). Compressive Strength Properties of Cassava Peel Ash and Wood Ash in Concrete Production. International Journal of New Practices in Management and Engineering, 11(01), 31–40. doi:10.17762/ijnpme.v11i01.171.
[24] Ogunbode, E. B., Nyakuma, B. B., Jimoh, R. A., Lawal, T. A., & Nmadu, H. G. (2021). Mechanical and microstructure properties of cassava peel ash–based Kenaf bio-fibrous concrete composites. Biomass Conversion and Biorefinery, 2021, 1–11. doi:10.1007/s13399-021-01588-6.
[25] Tang, Z., Li, Z., Hua, J., Lu, S., & Chi, L. (2022). Enhancing the damping properties of cement mortar by pre-treating coconut fibers for weakened interfaces. Journal of Cleaner Production, 134662. doi:10.1016/j.jclepro.2022.134662.
[26] Salau, M. A., & Olonade, K. A. (2011). Pozzolanic potentials of cassava peel ash. Journal of Engineering Research, 16(1), 10-21.
[27] Ubalua, A. O. (2007). Cassava wastes: Treatment options and value addition alternatives. African Journal of Biotechnology, 6(18), 2065–2073. doi:10.5897/ajb2007.000-2319.
[28] ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
[29] ASTM C127-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.
[30] ASTM D5874-16. (2016). Standard Test Methods for Determination of the Impact Value (IV) of a Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D5874-16.
[31] ASTM C131-06. (2010). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131-06.
[32] ASTM C128-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-15.
[33] ASTM D4719-20. (2020). Standard Test Methods for Prebored Pressuremeter Testing in Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4719-20.
[34] EN 1426:2015. (2015). Bitumen and bituminous binders. Determination of needle penetration. British Standard Institute (BSI), London, United Kingdom.
[35] IS:1203. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Penetration. Bureau of Indian Standard, New Delhi, India.
[36] AASHTO D-5 (1993). AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Vol. 1, Washington, United States.
[37] IS:1208. (1978). Methods for Testing Tar and Bituminous Materials: Determination of ductility. Bureau of Indian Standard, New Delhi, India.
[38] ASTM D113-99. (2010). Standard Test Method for Ductility of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0133-99.
[39] IS:1209. (1978). Methods for Testing Tar and Bituminous Materials: determination of Flash Point and Fire Point. Bureau of Indian Standard, New Delhi, India.
[40] IS:1206 (Part II). (1978). Methods for Testing Tar and Bituminous Materials: Determination of Viscosity. Bureau of Indian Standard, New Delhi, India.
[41] ASTM D2171-07. (2010). Standard Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer. ASTM International, Pennsylvania, United States. doi:10.1520/D2171-07.
[42] ASTM D70-18a. (2021). Standard Test Method for Density of Semi Solid Bituminous Materials (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070-18A.
[43] BS EN 1427:2015. (2015). Bitumen and bituminous binders. Determination of the softening point. Ring and Ball Method. British Standards Institution (BSI), London, United Kingdom.
[44] IS:1205. (1978). Methods for Testing Tar and Bituminous Materials: determination of Softening Point. Bureau of Indian Standard, New Delhi, India.
[45] ASTM D36-06. (2010). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D0036-06.
[46] ISO 2592:2017. (2017). Petroleum and related products-Determination of flash and fire points-Cleveland open cup method. International Organization for Standardization (ISO), Geneva, Switzerland.
[47] ASTM D92-18. (2018). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-18.
[48] IS:1212. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Loss on Heating. Bureau of Indian Standard, New Delhi, India.
[49] IS:1211. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Water Content (Dead and Stark Method). Bureau of Indian Standard, New Delhi, India.
[50] ASTM-D1559. (1989). Test Method for resistance of plastic flow of Bituminous Mixtures Using Marshal Apparatus (Withdrawn 1998). ASTM International, Pennsylvania, United States.
[51] ASTM A530/A530M-18. (2020). Standard Specification for General Requirements for Specialized Carbon and Alloy Steel Pipe. ASTM International, Pennsylvania, United States. doi:10.1520/A0530_A0530M-18
[52] Myers H. R., Montgomery, D. C., & Anderson-Cook, C. A. (2016). Response Surface Methodology: Process and Product Optimization Using designed Experiments (3rd Ed.). Wiley, Hoboken, United States.
[53] Hosseinpour, V., Kazemeini, M., & Mohammadrezaee, A. (2011). A study of the water-gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilizing experimental design methodology. Chemical Engineering Science, 66(20), 4798–4806. doi:10.1016/j.ces.2011.06.053.
[54] Azargohar, R., & Dalai, A. K. (2005). Production of activated carbon from Luscar char: Experimental and modeling studies. Microporous and Mesoporous Materials, 85(3), 219–225. doi:10.1016/j.micromeso.2005.06.018.
[55] Frigon, N. L., & Mathews, D. (1996). Practical guide to experimental design. John Wiley & Sons, Hoboken, United States.
[56] Khuri, A. I., & Cornell, J. A. (1996). Response Surfaces: Designs and Analyses (2nd Ed.). Marcel Dekker Inc., New York, United States.
[57] Obinna, A. C., Mbah, G. O., & Onoh, M. I. (2021). Optimization and Process Modelling of Viscosity of Oil Based Drilling Muds. Journal of Human, Earth, and Future, 2(4), 412-423. doi:10.28991/HEF-2021-02-04-09.
[58] Montgomery, D. C. (2005). Design and Analysis of Experiments (6th Ed.). John Wiley and Sons, New York, United States.
[59] Design-Expert software, v9, user's guide (2013). Technical manual, Stat Ease Inc. Minneapolis, United States. Available online: http://www.statease.com/dx9.html (accessed on August 2022).
[2] Modupe, A. E., Fadugba, O. G., Busari, A. A., Adeboje, A. O., Aladegboye, O. J., Alejolowo, O. O., & Chukwuma, C. G. (2021). Sustainability Assessment of the Engineering Properties of Asphalt Concrete Incorporating Pulverized Snail Shell Ash as Partial Replacement for Filler. IOP Conference Series: Earth and Environmental Science, 665(1), 12057. doi:10.1088/1755-1315/665/1/012057.
[3] Graham, L. A. (2018). Pavement Preservation Best Practices Technical Briefs. Ph.D. Thesis, University of Nevada, Reno, United States.
[4] Lee, K. W., & Mahboub, K. C. (2006). Asphalt mix design and construction: Past, present, and future. The Bituminous Material Committee of the Construction Institute of ASCE, A special publication for the 150th Anniversary of ASCE. doi:10.1061/9780784408421.
[5] Eswan, E., Adisasmita, S. A., Ramli, M. I., & Rauf, S. (2021). Characteristics of Asphalt Mixed Using Mountain Stone. Civil Engineering Journal, 7(2), 268-277. doi:10.28991/cej-2021-03091652.
[6] Chen, M., Lin, J., & Wu, S. (2011). Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and Building Materials, 25(10), 3909–3914. doi:10.1016/j.conbuildmat.2011.04.022.
[7] Chen, J.-S., Kuo, P.-H., Lin, P.-S., Huang, C.-C., & Lin, K.-Y. (2007). Experimental and theoretical characterization of the engineering behavior of bitumen mixed with mineral filler. Materials and Structures, 41(6), 1015–1024. doi:10.1617/s11527-007-9302-5.
[8] Abtahi, S. M., Sheikhzadeh, M., & Hejazi, S. M. (2010). Fiber-reinforced asphalt-concrete – A review. Construction and Building Materials, 24(6), 871–877. doi:10.1016/j.conbuildmat.2009.11.009.
[9] Kalantar, Z. N., Karim, M. R., & Mahrez, A. (2012). A review of using waste and virgin polymer in pavement. Construction and Building Materials, 33, 55–62. doi:10.1016/j.conbuildmat.2012.01.009.
[10] Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58–73. doi:10.1016/j.resconrec.2007.02.002.
[11] Shu, X., & Huang, B. (2014). Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview. Construction and Building Materials, 67, 217–224. doi:10.1016/j.conbuildmat.2013.11.027.
[12] Al-Hdabi, A. (2016). Laboratory investigation on the properties of asphalt concrete mixture with Rice Husk Ash as filler. Construction and Building Materials, 126, 544–551. doi:10.1016/j.conbuildmat.2016.09.070.
[13] Bi, Y., & Jakarni, F. (2019). Evaluating properties of wood ash modified asphalt mixtures. IOP Conference Series: Materials Science and Engineering, 512, 012004. doi:10.1088/1757-899x/512/1/012004.
[14] Modupe, A. E., Olayanju, T. M. A., Atoyebi, O. D., Aladegboye, S. J., Awolusi, T. F., Busari, A. A., Aderemi, P. O., & Modupe, O. C. (2019). Performance evaluation of hot mix asphaltic concrete incorporating cow bone ash (CBA) as partial replacement for filler. IOP Conference Series: Materials Science and Engineering, 640(1). doi:10.1088/1757-899X/640/1/012082.
[15] Adesanya, D. A., & Raheem, A. A. (2009). Development of corn cob ash blended cement. Construction and Building Materials, 23(1), 347–352. doi:10.1016/j.conbuildmat.2007.11.013.
[16] Oluwatuyi, O. E., Adeola, B. O., Alhassan, E. A., Nnochiri, E. S., Modupe, A. E., Elemile, O. O., Obayanju, T., & Akerele, G. (2018). Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Studies in Construction Materials, 9, e00191. doi:10.1016/j.cscm.2018.e00191.
[17] Adesanya, O. A., Oluyemi, K. A., Josiah, S. J., Adesanya, R., Shittu, L., Ofusori, D., ... & Babalola, G. (2008). Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. The Internet Journal of Microbiology, 5(1), 25-35. doi:10.5580/4f1.
[18] Adegoke, D. D., Ogundairo, T. O., Olukanni, D. O., & Olofinnade, O. M. (2019). Application of Recycled Waste Materials for Highway Construction: Prospect and Challenges. Journal of Physics: Conference Series, 1378(2), 22058. doi:10.1088/1742-6596/1378/2/022058.
[19] Ayodele, A. L., Mgboh, C. V, & Fajobi, A. B. (2021). Geotechnical properties of some selected lateritic soils stabilized with cassava peel ash and lime. Algerian Journal of Engineering and Technology, 04, 22–29. doi:10.5281/zenodo.4536448.
[20] Raheem, Arubike, E. D., & Awogboro, O. S. (2015). Effects of Cassava Peel Ash (CPA) as Alternative Binder in Concrete. International Journal of Constructive Research in Civil Engineering, 1(2), 27–32.
[21] Olatokunbo, O., Anthony, E., Rotimi, O., Solomon, O., Tolulope, A., John, O., & Adeoye, O. (2018). Assessment of strength properties of cassava peel ash-concrete. International Journal of Civil Engineering and Technology, 9(1), 965-974.
[22] Osuide, E. E., Ukeme, U., & Osuide, M. O. (2021). An assessment of the compressive strength of concrete made with cement partially replaced with cassava peel ash. SAU Science-Tech Journal, 6(1), 64-73.
[23] Olubunmi A, A., Taiye J., A., & Tobi, A. (2022). Compressive Strength Properties of Cassava Peel Ash and Wood Ash in Concrete Production. International Journal of New Practices in Management and Engineering, 11(01), 31–40. doi:10.17762/ijnpme.v11i01.171.
[24] Ogunbode, E. B., Nyakuma, B. B., Jimoh, R. A., Lawal, T. A., & Nmadu, H. G. (2021). Mechanical and microstructure properties of cassava peel ash–based Kenaf bio-fibrous concrete composites. Biomass Conversion and Biorefinery, 2021, 1–11. doi:10.1007/s13399-021-01588-6.
[25] Tang, Z., Li, Z., Hua, J., Lu, S., & Chi, L. (2022). Enhancing the damping properties of cement mortar by pre-treating coconut fibers for weakened interfaces. Journal of Cleaner Production, 134662. doi:10.1016/j.jclepro.2022.134662.
[26] Salau, M. A., & Olonade, K. A. (2011). Pozzolanic potentials of cassava peel ash. Journal of Engineering Research, 16(1), 10-21.
[27] Ubalua, A. O. (2007). Cassava wastes: Treatment options and value addition alternatives. African Journal of Biotechnology, 6(18), 2065–2073. doi:10.5897/ajb2007.000-2319.
[28] ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
[29] ASTM C127-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.
[30] ASTM D5874-16. (2016). Standard Test Methods for Determination of the Impact Value (IV) of a Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D5874-16.
[31] ASTM C131-06. (2010). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131-06.
[32] ASTM C128-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-15.
[33] ASTM D4719-20. (2020). Standard Test Methods for Prebored Pressuremeter Testing in Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4719-20.
[34] EN 1426:2015. (2015). Bitumen and bituminous binders. Determination of needle penetration. British Standard Institute (BSI), London, United Kingdom.
[35] IS:1203. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Penetration. Bureau of Indian Standard, New Delhi, India.
[36] AASHTO D-5 (1993). AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Vol. 1, Washington, United States.
[37] IS:1208. (1978). Methods for Testing Tar and Bituminous Materials: Determination of ductility. Bureau of Indian Standard, New Delhi, India.
[38] ASTM D113-99. (2010). Standard Test Method for Ductility of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0133-99.
[39] IS:1209. (1978). Methods for Testing Tar and Bituminous Materials: determination of Flash Point and Fire Point. Bureau of Indian Standard, New Delhi, India.
[40] IS:1206 (Part II). (1978). Methods for Testing Tar and Bituminous Materials: Determination of Viscosity. Bureau of Indian Standard, New Delhi, India.
[41] ASTM D2171-07. (2010). Standard Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer. ASTM International, Pennsylvania, United States. doi:10.1520/D2171-07.
[42] ASTM D70-18a. (2021). Standard Test Method for Density of Semi Solid Bituminous Materials (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070-18A.
[43] BS EN 1427:2015. (2015). Bitumen and bituminous binders. Determination of the softening point. Ring and Ball Method. British Standards Institution (BSI), London, United Kingdom.
[44] IS:1205. (1978). Methods for Testing Tar and Bituminous Materials: determination of Softening Point. Bureau of Indian Standard, New Delhi, India.
[45] ASTM D36-06. (2010). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D0036-06.
[46] ISO 2592:2017. (2017). Petroleum and related products-Determination of flash and fire points-Cleveland open cup method. International Organization for Standardization (ISO), Geneva, Switzerland.
[47] ASTM D92-18. (2018). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-18.
[48] IS:1212. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Loss on Heating. Bureau of Indian Standard, New Delhi, India.
[49] IS:1211. (1978). Methods for Testing Tar and Bituminous Materials: Determination of Water Content (Dead and Stark Method). Bureau of Indian Standard, New Delhi, India.
[50] ASTM-D1559. (1989). Test Method for resistance of plastic flow of Bituminous Mixtures Using Marshal Apparatus (Withdrawn 1998). ASTM International, Pennsylvania, United States.
[51] ASTM A530/A530M-18. (2020). Standard Specification for General Requirements for Specialized Carbon and Alloy Steel Pipe. ASTM International, Pennsylvania, United States. doi:10.1520/A0530_A0530M-18
[52] Myers H. R., Montgomery, D. C., & Anderson-Cook, C. A. (2016). Response Surface Methodology: Process and Product Optimization Using designed Experiments (3rd Ed.). Wiley, Hoboken, United States.
[53] Hosseinpour, V., Kazemeini, M., & Mohammadrezaee, A. (2011). A study of the water-gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilizing experimental design methodology. Chemical Engineering Science, 66(20), 4798–4806. doi:10.1016/j.ces.2011.06.053.
[54] Azargohar, R., & Dalai, A. K. (2005). Production of activated carbon from Luscar char: Experimental and modeling studies. Microporous and Mesoporous Materials, 85(3), 219–225. doi:10.1016/j.micromeso.2005.06.018.
[55] Frigon, N. L., & Mathews, D. (1996). Practical guide to experimental design. John Wiley & Sons, Hoboken, United States.
[56] Khuri, A. I., & Cornell, J. A. (1996). Response Surfaces: Designs and Analyses (2nd Ed.). Marcel Dekker Inc., New York, United States.
[57] Obinna, A. C., Mbah, G. O., & Onoh, M. I. (2021). Optimization and Process Modelling of Viscosity of Oil Based Drilling Muds. Journal of Human, Earth, and Future, 2(4), 412-423. doi:10.28991/HEF-2021-02-04-09.
[58] Montgomery, D. C. (2005). Design and Analysis of Experiments (6th Ed.). John Wiley and Sons, New York, United States.
[59] Design-Expert software, v9, user's guide (2013). Technical manual, Stat Ease Inc. Minneapolis, United States. Available online: http://www.statease.com/dx9.html (accessed on August 2022).
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
