Eco-friendly Super Sulphated Cement Concrete Using Vietnam Phosphogypsum and Sodium Carbonate Na2CO3
Downloads
Doi: 10.28991/CEJ-2022-08-11-06
Full Text: PDF
[2] Singh, M., & Garg, M. (2002). Production of beneficiated phosphogypsum for cement manufacture. Journal of Scientific and Industrial Research, 61(7), 533–537.
[3] Singh, M. (2003). Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster. Cement and Concrete Research, 33(9), 1363–1369. doi:10.1016/S0008-8846(03)00068-1.
[4] Ghafoori, N., & Chang, W. F. (1991). Roller-compacted concrete slabs using phosphogypsum. Transportation research record, 1301, National Academy of Sciences, Engineering, and Medicine, formerly the National Research Council of the United States.
[5] Lopez, A. M., & Seals, R. K. (1992). The environmental and geotechnical aspects of phosphogypsum utilization and disposal. Mediterranean conference on environmental geotechnology, 437-443, 25-27 May, 1992, Cesme, Turkey.
[6] Garg, M., Singh, M., & Kumar, R. (1996). Some aspects of the durability of a phosphogypsum-lime-fly ash binder. Construction and Building Materials, 10(4), 273–279. doi:10.1016/0950-0618(95)00085-2.
[7] Singh, M., & Garg, M. (1995). Phosphogypsum - Fly ash cementitious binder - Its hydration and strength development. Cement and Concrete Research, 25(4), 752–758. doi:10.1016/0008-8846(95)00065-K.
[8] Singh, M., & Garg, M. (1999). Cementitious binder from fly ash and other industrial wastes. Cement and Concrete Research, 29(3), 309–314. doi:10.1016/S0008-8846(98)00210-5.
[9] Basheer, P. A. M., Gilleece, P. R. V., Long, A. E., & Mc Carter, W. J. (2002). Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. Cement and Concrete Composites, 24(5), 437–449. doi:10.1016/S0958-9465(01)00075-0.
[10] Gruyaert, E., Van Den Heede, P., Maes, M., & De Belie, N. (2012). Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cement and Concrete Research, 42(1), 173–185. doi:10.1016/j.cemconres.2011.09.009.
[11] Güneyisi, E., & Gesoğlu, M. (2008). A study on durability properties of high-performance concretes incorporating high replacement levels of slag. Materials and Structures/Materiaux et Constructions, 41(3), 479–493. doi:10.1617/s11527-007-9260-y.
[12] Shi, H. sheng, Xu, B. wan, & Zhou, X. chen. (2009). Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Construction and Building Materials, 23(5), 1980–1985. doi:10.1016/j.conbuildmat.2008.08.021.
[13] Song, H. W., & Saraswathy, V. (2006). Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag-An overview. Journal of Hazardous Materials, 138(2), 226–233. doi:10.1016/j.jhazmat.2006.07.022.
[14] Matschei, T., Bellmann, F., & Stark, J. (2005). Hydration behaviour of sulphate-activated slag cements. Advances in Cement Research, 17(4), 167–178. doi:10.1680/adcr.2005.17.4.167.
[15] Masoudi, R., & Hooton, R. D. (2019). Examining the hydration mechanism of super sulfated cements made with high and low-alumina slags. Cement and Concrete Composites, 103, 193–203. doi:10.1016/j.cemconcomp.2019.05.001.
[16] Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S. C., Adler, M., & Mäder, U. (2008). Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research, 38(7), 983–992. doi:10.1016/j.cemconres.2008.03.004.
[17] Gijbels, K., Pontikes, Y., Samyn, P., Schreurs, S., & Schroeyers, W. (2020). Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cement and Concrete Research, 132. doi:10.1016/j.cemconres.2020.106054.
[18] Aliabdo, A. A., Abd Elmoaty, A. E. M., & Emam, M. A. (2019). Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials, 197, 339–355. doi:10.1016/j.conbuildmat.2018.11.086.
[19] Nguyen, H. A., Chang, T. P., Shih, J. Y., & Chen, C. T. (2019). Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cement and Concrete Composites, 99, 40–48. doi:10.1016/j.cemconcomp.2019.02.019.
[20] Rubert, S., Angulski da Luz, C., F. Varela, M. V., Pereira Filho, J. I., & Hooton, R. D. (2018). Hydration mechanisms of supersulfated cement: The role of alkali activator and calcium sulfate content. Journal of Thermal Analysis and Calorimetry, 134(2), 971–980. doi:10.1007/s10973-018-7243-6.
[21] Ding, S., Shui, Z., Chen, W., Lu, J., & Tian, S. (2014). Properties of supersulphated phosphogypsum slag cement (SSC) concrete. Journal Wuhan University of Technology, Materials Science Edition, 29(1), 109–113. doi:10.1007/s11595-014-0876-9.
[22] Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars: Mechanical strength behaviour. Cement and Concrete Research, 29(8), 1313–1321. doi:10.1016/S0008-8846(99)00154-4.
[23] Tuyan, M., Zhang, L. V., & Nehdi, M. L. (2020). Development of sustainable preplaced aggregate concrete with alkali-activated slag grout. Construction and Building Materials, 263, 120–227. doi:10.1016/j.conbuildmat.2020.120227.
[24] Cercel, J., Adesina, A., & Das, S. (2021). Performance of eco-friendly mortars made with alkali-activated slag and glass powder as a binder. Construction and Building Materials, 270. doi:10.1016/j.conbuildmat.2020.121457.
[25] Wang, J., Lyu, X. J., Wang, L., Cao, X., Liu, Q., & Zang, H. (2018). Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders. Journal of Cleaner Production, 171, 622–629. doi:10.1016/j.jclepro.2017.10.077.
[26] Ellis, K., Silvestrini, R., Varela, B., Alharbi, N., & Hailstone, R. (2016). Modeling setting time and compressive strength in sodium carbonate activated blast furnace slag mortars using statistical mixture design. Cement and Concrete Composites, 74, 1–6. doi:10.1016/j.cemconcomp.2016.08.008.
[27] Bernal, S. A., Provis, J. L., Myers, R. J., San Nicolas, R., & van Deventer, J. S. J. (2014). Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux et Constructions, 48(3), 517–529. doi:10.1617/s11527-014-0412-6.
[28] Abdalqader, A. F., Jin, F., & Al-Tabbaa, A. (2015). Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends. Construction and Building Materials, 93, 506–513. doi:10.1016/j.conbuildmat.2015.06.015.
[29] Kim, T., & Jun, Y. (2018). Mechanical Properties of Na2CO3-Activated High-Volume GGBFS Cement Paste. Advances in Civil Engineering, 2018, 1–9. doi:10.1155/2018/8905194.
[30] Sajedi, F., & Razak, H. A. (2010). The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Construction and Building Materials, 24(10), 1944–1951. doi:10.1016/j.conbuildmat.2010.04.006.
[31] Demirboǧa, R., Türkmen, I., & Karakoç, M. B. (2004). Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and Concrete Research, 34(12), 2329–2336. doi:10.1016/j.cemconres.2004.04.017.
[32] Deng, X., Guo, H., Tan, H., Nie, K., He, X., Yang, J., Wang, Y., & Zhang, J. (2022). Effect of organic alkali on hydration of GGBS-FA blended cementitious material activated by sodium carbonate. Ceramics International, 48(2), 1611–1621. doi:10.1016/j.ceramint.2021.09.240.
[33] Lam, N.N. (2020). A study on improvement of early - age strength of super sulfated cement using phosphogypsum. CIGOS 2019, Innovation for Sustainable Infrastructure. Lecture Notes in Civil Engineering, 54, Springer, Singapore. doi:10.1007/978-981-15-0802-8_84.
[34] Stark, J., Frohburg, U., & Mielke, I. (2001). Supersulfated cement with and without cement clinker. Proceedings of the International Symposium on Non-Traditional Cement and Concrete, Brno, Czech Republic.
[35] Ngoc Lam, N. (2020). Eco - Concrete made with phosphogypsum-based super sulfated cement. IOP Conference Series: Materials Science and Engineering, 869, 032031. doi:10.1088/1757-899X/869/3/032031.
[36] Lam, N. N. (2018). A study on super-sulfated cement using Dinh Vu phosphogypsum. IOP Conference Series: Earth and Environmental Science, 143(1). doi:10.1088/1755-1315/143/1/012016.
[37] Maldonado Bandala, E. E., Cabrera Luna, K., Escalante García, J. I., & Nieves Mendoza, D. (2018). Resistance to compression and microstructure of concrete manufactured with supersulfated cements-based materials of volcanic origin exposed to a sulphate environment. Revista ALCONPAT, 9(1), 106–116. doi:10.21041/ra.v9i1.374.
[38] Nguyen, H.-A., Chang, T.-P., Chen, C.-T., & Huang, T.-Y. (2022). Engineering and creep performances of green super-sulfated cement concretes using circulating fluidized bed combustion fly ash. Construction and Building Materials, 346, 128274. doi:10.1016/j.conbuildmat.2022.128274.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
