Performance of Mortar Incorporating Heat-Treated Drinking Water Treatment Sludge as a Silica-Sand Replacement
Downloads
Doi: 10.28991/CEJ-2022-08-08-08
Full Text: PDF
[2] U.S. Geological Survey. (2022). Minerals Yearbook, volume I, Metals and Minerals. Minerals Yearbook. National Minerals Information Center, U.S. Geological Survey, Reston, United States.doi:10.3133/mybvi.
[3] Pitchaiah, P. S. (2017). Impacts of Sand Mining on Environment–A Review. International Journal of Geoinformatics and Geological Science, 4(1), 1–6. doi:10.14445/23939206/ijggs-v4i1p101.
[4] Dudley, B. (2018). BP energy outlook. Report–BP Energy Economics. London, United Kingdom.
[5] Ahmad, T., Ahmad, K., & Alam, M. (2017). Sludge quantification at water treatment plant and its management scenario. Environmental Monitoring and Assessment, 189(9), 1–10. doi:10.1007/s10661-017-6166-1.
[6] Šukasiewicz, E. (2016). Post-coagulation sludge management for water and wastewater treatment with focus on limiting its impact on the environment. Economic and Environmental Studies (E&ES), 16(4), 831-841.
[7] Bohórquez González, K., Pacheco, E., Guzmán, A., Avila Pereira, Y., Cano Cuadro, H., & Valencia, J. A. F. (2020). Use of sludge ash from drinking water treatment plant in hydraulic mortars. Materials Today Communications, 23, 100930. doi:10.1016/j.mtcomm.2020.100930.
[8] Alzoubi, A. E., Ghunimat, D. M., Al-Rawashdeh, M., & Hanandeh, S. (2021). The potential of using water purification wastes as fine aggregates in concrete mixes: an initial study. Australian Journal of Civil Engineering, 19(2), 148–154. doi:10.1080/14488353.2020.1835148.
[9] Rodrigues, L. P., & Holanda, J. N. F. (2015). Recycling of Water Treatment Plant Waste for Production of Soil-Cement Bricks. Procedia Materials Science, 8, 197–202. doi:10.1016/j.mspro.2015.04.064.
[10] Godoy, L. G. G. de, Rohden, A. B., Garcez, M. R., Da Dalt, S., & Bonan Gomes, L. (2020). Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Studies in Construction Materials, 12, e00329. doi:10.1016/j.cscm.2020.e00329.
[11] KizinieviÄ, O., нurauskiene, R., KizinieviÄ, V., & нurauskas, R. (2013). Utilisation of sludge waste from water treatment for ceramic products. Construction and Building Materials, 41, 464–473. doi:10.1016/j.conbuildmat.2012.12.041.
[12] Chen, H. X., Ma, X., & Dai, H. J. (2010). Reuse of water purification sludge as raw material in cement production. Cement and Concrete Composites, 32(6), 436–439. doi:10.1016/j.cemconcomp.2010.02.009.
[13] Liu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Li, D., Pham, P. N., Huang, J., & Siddique, R. (2020). Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties. Journal of Environmental Management, 262, 110352. doi:10.1016/j.jenvman.2020.110352.
[14] Yavuz Bayraktar, O., Kaplan, G., Gencel, O., Benli, A., & Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128. doi:10.1016/j.conbuildmat.2021.123128.
[15] ASTM C778-17. (2021). Standard Specification for Standard Sand. ASTM International, Pennsylvania, United States. doi:10.1520/C0778-17.
[16] BS EN 1015-10:1999. (1999). Methods of test for mortar for masonry Determination of dry bulk density of hardened mortar. British Standard Institution, London, United Kingdom.
[17] ASTM C1403-15. (2022). Standard Test Method for Rate of Water Absorption of Masonry Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C1403-15.
[18] Dunster, A. M. (2007). Incinerated sewage sludge ash (ISSA) in autoclaved aerated concrete (AAC). Characterization of Mineral Wastes, Resources and Processing Technologies-Integrated Waste Management for the Production of Construction Material WRT, 177.
[19] Li, D., Zhuge, Y., Liu, Y., Pham, P. N., Zhang, C., Duan, W., & Ma, X. (2021). Reuse of drinking water treatment sludge in mortar as substitutions of both fly ash and sand based on two treatment methods. Construction and Building Materials, 277, 122330. doi:10.1016/j.conbuildmat.2021.122330.
[20] Vouk, D., Nakic, D., Stirmer, N., & Cheeseman, C. R. (2017). Use of sewage sludge ash in cementitious materials. Reviews on advanced materials science, 49(2).
[21] Agarwal, S. C. Waste”a Gateway to the Future Economy of Kotash Stone Industry in India.
[22] Monzó, J., Payá, J., Borrachero, M. V., & Girbés, I. (2003). Reuse of sewage sludge ashes (SSA) in cement mixtures: The effect of SSA on the workability of cement mortars. Waste Management, 23(4), 373–381. doi:10.1016/S0956-053X(03)00034-5.
[23] Silva, A. P. T. da, Silva, L. R. R. da, Ribeiro, V. A. dos S., Melo, M. de L. N. M., Gonçalves, P. C., Martins, M. V. L., Santos, V. C. dos, & Souza, M. H. B. de. (2022). Use of water treatment sludge in Self-Compacting Mortar (SCM). Research, Society and Development, 11(2), e0111225112. doi:10.33448/rsd-v11i2.25112.
[24] Al-Zboon, K., & Al-Zou'by, J. (2015). Recycling of stone cutting slurry in concrete mixes. Journal of Material Cycles and Waste Management, 17(2), 324–335. doi:10.1007/s10163-014-0246-x.
[25] Payá, J., Monzó, J., Borrachero, M. V., Amahjour, F., Girbés, I., Velázquez, S., & Ordónez, L. M. (2002). Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: Silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash. Journal of Chemical Technology and Biotechnology, 77(3), 331–335. doi:10.1002/jctb.583.
[26] Malaiskiene, J., Skripkiunas, G., Vaiciene, M., & Karpova, E. (2017). The influence of aggregates type on w/c ratio on the strength and other properties of concrete. IOP Conference Series: Materials Science and Engineering, 251(1), 12025. doi:10.1088/1757-899X/251/1/012025.
[27] Andrade, J. J. de O., Possan, E., ChiaradiaWenzel, M., & da Silva, S. R. (2019). Feasibility of using calcined water treatment sludge in rendering mortars: A technical and sustainable approach. Sustainability (Switzerland), 11(13), 3576. doi:10.3390/su11133576.
[28] Ramirez, K. G., Possan, E., Dezen, B. G. dos S., & Colombo, M. (2017). Potential uses of waste sludge in concrete production. Management of Environmental Quality: An International Journal, 28(6), 821–838. doi:10.1108/MEQ-09-2015-0178.
[29] Kesikidou, F., Konopisi, S., & Anastasiou, E. K. (2021). Influence of Concrete Sludge Addition in the Properties of Alkali-Activated and Non-Alkali-Activated Fly Ash-Based Mortars. Advances in Civil Engineering, 2021, 1-14. doi:10.1155/2021/5534002.
[30] Al Houri, A., Habib, A., Elzokra, A., & Habib, M. (2020). Tensile testing of soils: History, equipment and methodologies. Civil Engineering Journal (Iran), 6(3), 591–601. doi:10.28991/cej-2020-03091494.
[31] de Oliveira Andrade, J. J., Wenzel, M. C., da Rocha, G. H., & da Silva, S. R. (2018). Performance of rendering mortars containing sludge from water treatment plants as fine recycled aggregate. Journal of Cleaner Production, 192, 159–168. doi:10.1016/j.jclepro.2018.04.246.
[32] Liang, C., Le, X., Fang, W., Zhao, J., Fang, L., & Hou, S. (2022). The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review. Sustainability (Switzerland), 14(8), 4432. doi:10.3390/su14084432.
[33] Donatello, S., Tyrer, M., & Cheeseman, C. R. (2010). Comparison of test methods to assess pozzolanic activity. Cement and Concrete Composites, 32(2), 121–127. doi:10.1016/j.cemconcomp.2009.10.008.
[34] Praveen Kumar, V. V., & Ravi Prasad, D. (2019). Influence of Supplementary Cementitious Materials on Strength and Durability Characteristics of Concrete. Advances in Concrete Construction, 7(2), 75–85. doi:10.12989/acc.2019.7.2.075.
[35] Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24(1), 113–117. doi:10.1016/j.conbuildmat.2009.08.013.
[36] Pan, S. C., Tseng, D. H., Lee, C. C., & Lee, C. (2003). Influence of the fineness of sewage sludge ash on the mortar properties. Cement and Concrete Research, 33(11), 1749–1754. doi:10.1016/S0008-8846(03)00165-0.
[37] Chen, Z., & Poon, C. S. (2017). Comparing the use of sewage sludge ash and glass powder in cement mortars. Environmental Technology (United Kingdom), 38(11), 1390–1398. doi:10.1080/09593330.2016.1230652.
[38] Fontes, C. M. A., Toledo Filho, R. D., & Barbosa, M. C. (2016). Sewage sludge ash (SSA) in high performance concrete: characterization and application. Revista IBRACON de Estruturas e Materiais, 9(6), 989–1006. doi:10.1590/s1983-41952016000600009.
[39] Almeida, N., Branco, F., & Santos, J. R. (2007). Recycling of stone slurry in industrial activities: Application to concrete mixtures. Building and Environment, 42(2), 810–819. doi:10.1016/j.buildenv.2005.09.018.
[40] Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management, 33(11), 2328–2340. doi:10.1016/j.wasman.2013.05.024.
[41] Wang, K. S., Chiou, I. J., Chen, C. H., & Wang, D. (2005). Lightweight properties and pore structure of foamed material made from sewage sludge ash. Construction and Building Materials, 19(8), 627–633. doi:10.1016/j.conbuildmat.2005.01.002.
[42] Duan, W., Zhuge, Y., Pham, P. N., Chow, C. W. K., Keegan, A., & Liu, Y. (2020). Utilization of drinking water treatment sludge as cement replacement to mitigate alkali–silica reaction in cement composites. Journal of Composites Science, 4(4), 171. doi:10.3390/jcs4040171.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
